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Abstract

Despite a growing awareness of the health burdens associated with the local
air pollution emissions from shipping, responsibility for these burdens is not well
understood. Here we quantify the country-level contributions and exposure to the
fine particulate matter (PM2.5) mortality impacts of shipping across global value
chains using top-down accounting and input-output methods. Our analysis reveals
stark disparities in contributions and exposure to shipping related mortality. High
income countries bear less than 10% of mortality while contributing over 35%. For
the median country, over 95% of shipping related mortality is not associated with
their own consumption or production. Global value chains serve as a key driver of
these disparities by amplifying the exposure at certain locations of the global shipping
network while also moderating the non-income determinants of contributions.
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1 Introduction

The growth of global value chains (GVCs) has increased the spatial fragmentation of

production, such that final consumption is connected through global trade to multiple stages

of production across many countries [1, 2, 3]. An important environmental concern related

to GVCs is that fragmented production can potentially shift exposure to environmental

hazards from production onto populations that do not ultimately benefit from the goods

being produced [4, 5]. The growth of GVCs is also associated with the increased movement of

goods, and despite considerable research on the aggregate health burden of shipping [6, 7, 8],

disparities in exposure and contributions to this burden have remained unexplored. Here we

quantify the country-level contributions and exposure to the fine particulate matter (PM2.5)

mortality impacts of shipping across global value chains using top-down accounting and

input-output methods. Our analysis reveals stark disparities in contributions and exposure

to shipping related mortality. High income countries bear less than 10% of mortality

while contributing almost 35%. For the median country, over 95% of shipping related

mortality is not associated with their own consumption or production – a characteristic

that distinguishes shipping emissions from production emissions [5]. GVCs serve as a

key driver of these disparities by amplifying the exposure in the vicinity of major global

shipping lanes while also moderating the non-income determinants of contributions. GVC

linkages also effectively “conceal” the relationship between consumption and mortality, with

for example the consumption of non-traded goods accounting for 40% of shipping mortality.

The interplay between consumption, GVCs and shipping has important consequences for the

distributional effects of local and global policies to regulate local pollutants from shipping,

maritime decarbonization, trends in the use – and therefore shipping of fossil fuels – and

“reshoring.”

Prior to recent policy actions, shipping has been estimated to cause 60-400 thousand

premature deaths each year [8]. The vast majority of these deaths result from elevated fine

particulate matter (PM2.5) in coastal areas due to the combustion of maritime distillate

and residual fuels, which contributes both primary PM2.5 and secondarily formed PM2.5 due

to emissions of sulfur and nitrogen oxides (SOx and NOx). The challenges in attributing

mortality from shipping to final activities (i.e., consumption) are that shipping takes place

between every stage of production and across a global shipping network – with over 80% of

goods by weight traveling on ocean going vessels [9] – and that the health impacts of emissions

from ships vary substantially across space depending on the proximity to human populations

and the chemical transport of pollutants. For example, the purchase of a Japanese built car

in Europe would contribute to health impacts due to the shipping of the car from Japan
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to Europe (perhaps through Antwerp). This shipping would contribute to air pollution and

mortality in Japan and Europe, as well countries close to shipping routes through the South

China, Red and Mediterranean seas, and the Indian Ocean. But shipping is also used to

move parts to Japan, perhaps from countries in South Asia, and the raw materials used to

make these parts (e.g., minerals from Australia or oil from the Middle East), and so on.

Quantifying how consumption contributes to the health impacts associated with shipping

therefore requires linking data on all bilateral trade flows to estimates of mortality from

shipping on each trade flow that depend on the ports and routes used, the characteristics of

vessels and how emissions along the shipping network affect mortality.

A number of previous studies have linked production emissions to consumption using

input-output methods, initially focusing on greenhouse gases (GHGs) [10, 11]. These studies

emphasize that due to the GHGs embodied in trade there are important differences in

accounting for emissions based on the location of release as opposed to the consumption

ultimately being supported. Studies that extended these methods to local pollutants

have especially highlighted how exposure to pollution disproportionately falls on regions

[12, 4, 5, 13, 14, 15] and sociodemographic groups [16, 17] that are not the final consumers.

For example, Zhang et al. [5] shows that 22% of global mortality related to PM2.5 from

the production of goods is associated with consumption in other regions. Despite shipping’s

important contribution to air pollution and the possibility for starker disparities because

shipping activities can occur far from the producers and consumers of goods being shipped,

none of these studies focus on shipping and often exclude international transportation from

the analysis. A number of the recent studies on the environmental impacts of shipping

have used bottom-up approaches based on Automatic Identification System (AIS) data to

estimate the contribution of shipping to local pollutant emissions and health impacts at the

global [8, 18, 19] or regional scale [20, 21]. These studies have highlighted disparities in

exposure to emissions from shipping, but since they do not link shipping activities to trade

flows, the impacts of these emissions cannot be attributed to consumption. Studies that

do link shipping activities to trade flows have only done so for specific bilateral flows and

have not considered multiple stages of production [22, 23], or have not linked emissions to

consumption (and focused on GHGs) [24, 25].

Here we quantify the disparities in contributions and exposure to the health impacts

of shipping across global value chains using a top-down accounting of the PM2.5 related

mortality impacts of shipping and input-output methods. The top-down accounting

combines the first estimates of the marginal mortality from shipping – the number of deaths

(by country) per dollar for each trade flow (country pair by sector) – with a multi-region

input-output database. To construct the marginal mortality estimates, we first use a global
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database of vessel port calls and global trade data to calculate how a dollar of a good

moving between two countries contributes to weight shipped by vessel type between port

pairs. Next, we use routing models, vessel characteristics and emissions factors to allocate

the port-to-port flows to fuel use and emissions on links in a global maritime network. The

routing models allow us to capture differential behavior across vessel types, in particular the

indirect shipping and transhipment at hub ports of containerized goods [26]. Finally, we use

a source-receptor matrix constructed using a reduced complexity air pollution model and

standard concentration-response functions to calculate how the emissions (on the network)

contribute to mortality in each country. Using input-output methods we calculate how each

country’s final consumption contributes to shipping related mortality in each other country,

across all production stages, and the disparity in exposure and contributions to mortality.

To investigate the role of GVCs, we decompose contributions by production stage (shipping

final goods, direct inputs, inputs-to-inputs, etc.) and exposure into mortality related to

own-country activities and activities in other countries. A full description of our methods

are available in the Supplemental Material.

2 Results

Global Totals Table 1 reports our top-down estimates of shipping activities, emissions

and shipping-related mortality. In our main analysis, we assume that the fuel sulfur limits

designated by the International Maritime Organization (IMO) in place at the end of 2020

– 0.5% fuel sulfur by weight globally due to a regulation referred to as IMO 2020 and

0.1% in Emission Control Areas (ECAs) off the coast of North America and in the North

and Baltic seas – are binding. The estimated annual value of goods carried by ships, for

domestic (or coastal) and international shipping, is over $20 trillion (in 2017 US dollars)

and the weight carried by ships is 25.7 billion tons. Shipping services total 118 trillion ton-

kilometers, require 233 million tons of fuel and results in the emission of 0.52 million tons

of primary PM2.5, 2.08 tons of SOx and 21.53 tons of NOx. The mortality due to elevated

ambient PM2.5 resulting from these emissions are over 205,000 deaths per year. This is

a lower-bound of the overall health impacts of shipping because vessels also release other

pollutants (e.g. VOCs), and ambient PM2.5 also contributes to other negative health impacts

including morbidity [27]. These estimates of fuel use, emissions, and mortality are broadly

to comparable global statistics [9] and, in the case of emissions and mortality, inventory

studies of the local pollution impacts from shipping that use similar assumptions [8, 19] (see

Section B in the Supplemental Material).
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Exposure and Contributions to Mortality Panel (a) in Figure 1 shows each country’s

per capita exposure to shipping related mortality. Mortality is concentrated along the major

shipping lanes connecting Europe and Asia, with high levels across the Mediterranean, Red

Sea, Indian Ocean and South and East China Seas. For example, mortality per million

people is 24.0 in Egypt, 20.2 in Tunisia, 16.9 in India, 32.1 in Japan and 51.3 in Sri Lanka,

compared to a global median of 8.8. The shipping traffic contributing to mortality does

not originate and is not destined for many of these highly exposed countries. By contrast,

mortality is quite low in North America (e.g. 7.9 in US), Northern Europe (e.g. 11.2 in UK,

12.4 in Germany) and Australia (2.4), which are distant from major shipping lanes and/or

are partially protected by ECAs.

Panel (b) of Figure 1 shows the per capita contributions to global mortality due to

shipping on the basis of consumption. The spatial distribution of contributions is strikingly

different from the distribution of exposure in the first panel. Countries with high per capita

income tend to have the highest contributions to mortality. Contributions to mortality per

million people are 52.5 for the US, 40.9 for Germany, 117.0 for Bahrain and 72.5 for Japan

compared to a global median of 17.6. The median low income country contributes just 10.2

deaths per million people.

The first two panels of Figure 1 are suggestive of the disparity between countries’

contribution and exposure to mortality. A more direct metric for this disparity is the ratio

of a country’s exposure to shipping mortality to its contribution to shipping mortality (c.f.

the pollution inequity measure used by [16] in the context of US consumption). A value of

1 would mean that a country’s per capita exposure is equal to its per capita contribution.

The median country is exposed to 0.44 deaths for each death it contributes. Panel (c) of 1

shows that this exposure-contribution ratio varies starkly across the world, with almost all

rich countries below the median contribution-exposure ratio and most lower income countries

above it. North America and Northern Europe have values that are close to 0 (e.g. 0.15 in

the US, 0.13 in Canada, 0.30 in Germany). Relatively lower income countries near major

shipping lanes in general tend to experience very high exposure relative to contributions.

For example, China is exposed to 1.70 deaths for each death it contributes, Vietnam to 2.27,

Sri Lanka to 2.51, Colombia to 3.57 and Ethiopia to 3.74.

Exposure to Activities of Other Countries The patterns in exposure and

contributions indicate that much of the exposure countries face is the result of activities of

other countries. As shown in the Supplemental Material, we can calculate the contribution

of other countries’ activities to exposure in each country by stripping out mortality related

to own country consumption and own country participation in other countries’ value chains
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(in the sense of being an importer or exporter of goods ultimately supporting consumption

in other countries). We find that activities in other countries account for about 46% of

total global mortality (Table 2). Own consumption and contributions to the supply chains

of other countries are 37% and 17%, respectively. Due to the substantial own country

contributions of India and China, the effect is even more stark for the median country:

in the median country 96% of mortality is unrelated to own consumption and value chain

contributions. The pervasiveness of exposure to activities of other countries is a distinctive

characteristic of the health impacts of shipping. Unlike in the production emissions context

([12, 4, 5]), exposure to shipping emissions occurs due to the routing of vessels through the

global shipping network.

At the country level (Figure A.1), larger economies tend to mainly bear more mortality

from their own activities, either due to consumption, or production of raw materials or

intermediates, while countries with smaller economies tend to bear more mortality from

activities they are uninvolved in. For example, mortality from other countries’ activities

is lowest in the US, China, Brazil and Australia. India is somewhat of an outlier – a

large economy with a relatively large share of mortality from other’s activities – due to its

position between China and Europe. Using mortality due to other countries’ activities in

the exposure-contribution ratio (Figure A.2) does not drastically alter the spatial patterns

in disparities discussed above. However, larger economies tend to have lower exposure-

contribution ratios in this case due to the importance of own activities for these countries.

Exposure and Contributions of Mortality Across Income Groups and Regions

Our methodology allows us understand how value chains link consumption in each country

to mortality in every other country. The left side of Figure 2 depicts these results aggregated

to income brackets. The left most bar depicts mortality by income bracket, while the next

bar to the right depicts the income brackets whose consumption is ultimately responsible

for this mortality. There is again a clear disparity between exposure and contributions:

High income countries bear less than 10% of shipping related mortality, while contributing

34%. In contrast, lower income countries bear around 26% of mortality from shipping, while

contributing around 21%, and middle income countries bear around 64% and contribute

around 45%. Apart from the disparity in exposure and contributions, we also see a clear

shifting of environmental burden: high income countries contribute almost 19,000 deaths

in lower income countries. Lower income countries, however, contribute only around 1,800

deaths in high income countries.

The right side of Figure 2 depicts total mortality and the contributions to mortality from

shipping by region. As shown by the earlier maps, the majority of exposure to mortality
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is in Asia and the Middle East and North Africa (MENA) due to their close proximity to

busy shipping lanes. Europe, North and South America experience relatively little mortality,

especially considering the size of these economies. The most notable pattern in the flows of

mortality between regions is that other-region consumption contributes little to mortality in

North America (1,188 deaths) and Europe (6,135 deaths), compared to Asia (48,226 deaths),

MENA (5,976 deaths) and Sub-Saharan Africa (1,882 deaths).

Panel (b) of Figure 2 expands the left side of Panel (a) to illustrate how they types of

goods being consumed (third column) and being shipped (second column) mediates the

exposure and contributions patterns across countries. Among the shipped goods, fossil

fuel shipping in particular is notable with the shipping of petroleum, natural gas and coal

accounting for almost 35% of total global mortality from shipping. This highlights the

important role of the mere shipping of fossil fuels in generating local pollutant damage.

While the shipping of fossil fuels and other primarily intermediate input sectors such

as chemicals and mining/metal dominate the mortality contributions, the consumption

goods that ultimately drive this shipping are quite different. Consumption of services

account for 41% of global deaths despite technically being a mostly non-traded sector –

a fact that highlights the importance of accounting for value chain linkages. Examining the

sectoral and income patterns together, it is clear that richer countries consumption of these

ostensibly cleaner goods drive a substantial portion of mortality. It is also notable that food

consumption accounts for a larger share of mortality contributed for low and middle income

countries than for high income countries.

Key Role of Global Value Chains Figure 2 indirectly points to the fact that global value

chains are a key driver of the disparities in the exposure and contribution to shipping-related

mortality. Analyzing mortality by production stage – stage 0 is the shipping of final goods,

stage 1 is the shipping of inputs to the production of final goods, stage 2 is the shipping of

inputs to inputs, and so on – reveals that value chains amplify exposure in countries near

shipping lanes while weakening non-income determinants of contributions.

The mortality embodied in the trade flows between Germany and the US and China

and the US are mapped by production stage in Figures 3 and 4. The Germany–US maps

illustrate that with global value chains even highly regional activities contribute heavily

to mortality in the regions most exposed to shipping lanes due to the shipping of inputs

embodied in these activities. Mortality associated with stage 0 (panel (a)) – the direct

shipping of goods from Germany to the US – is mainly in the countries along the shipping

lanes connecting the two trade partners (e.g., US, Germany and the countries in northern

Europe and Caribbean). However, when moving back through the stages of the supply chain,
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shipping mortality concentrates in Asia/Pacific (China and India especially) and in north

Africa and the Middle East, despite these areas being quite distant from the shipping lanes

between US and Germany. After accounting for all production stages (stage ∞) overall

mortality in these regions easily exceed the mortality in the US or Germany. The most

notable pattern for the China–US trade flow is that mortality in China increases substantially

as more production stages are included. Since China is central to global supply chains and

shipping networks, going back through the supply chain amplifies shipping activity and

mortality in and around China.

Value chains concentrating mortality in certain regions is clearly evident at more

aggregate levels, indicating that this effect is systematic. Figure 5 plots regional contributions

(from consumption) to regional mortality by production stage. Across all regions, a sizable

fraction of stage 0 mortality is within the contributing region. However, overall mortality

tends to be dominated by contributions to the highly exposed regions (largely MENA and

Asia/Pacific) in stage 1 and beyond. This pattern is especially clear for North America

and Europe. For example, the majority of North American contributions to mortality occur

in Asia/Pacific and MENA, but only a small fraction of this mortality is related to the

shipping of final goods. This amplification of mortality is also evident for Asia/Pacific,

where contributions to mortality are nearly all in the same region, but about 80% of overall

contributions are due to value chains.

Unlike exposure, the maps in Figure 1 indicate that contributions to mortality are

driven primarily by GDP per capita. To understand this pattern, note that per capita

contributions to mortality is the product of income per capita and mortality per dollar of

consumption. Therefore, a 1% increase in income would be associated with a 1% increase in

mortality per capita unless there are also differences in mortality per dollar of consumption,

which captures the non-income related determinants of contributions to mortality such

as geography, transportation infrastructure and consumption patterns. To explore these

relationships, in Table 3 we present slope coefficients of bi-variate regressions of (logged)

per capita contributions to mortality and other determinants of per capita contributions to

mortality on (logged) per capita income at the country level. We estimate these regressions

for each outcome in stage 0 (first column of numbers) and when the outcome is accumulated

over further production stages (remaining columns) to show the contributions of value chains.

For stage 0, a 1% increase in per capita income is associated with a 0.49% increase in per

capita contributions to mortality and per capita income explains only 31% of the variation in

per capita contributions (first row). This shows that for direct shipping, non-income related

differences across countries play an important role in the relationship between income and

contributions. Mortality per dollar of consumption (second row) falls with income because
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lower income countries are more dependent on shipping by sea ($ shipped by sea per dollar of

consumption) and on shipping services (kg-km per dollar shipped), which are both connected

to the geographic and structural features of countries.

When considering contributions to mortality across the entire value chain, however,

the relationship between income and contributions becomes substantially stronger; a 1%

increase in income is associated with a 0.73% increase in mortality and income explains

74% of the variation in per capita contributions. Countries’ non-income determinants of

mortality are averaged out over the value chain (mortality per dollar falls) because the

shipping of intermediate inputs is concentrated in major shipping lanes regardless of the

ultimate location of final consumption.

Impacts of Recent Policy Actions Recent policy actions have targeted maritime fuel

sulfur at the global and local scale and have dramatically changed the health implications

of shipping. IMO 2020 reduced the global fuel sulfur limit from 3.5% to 0.5%, while ECAs

limited fuel sulfur to 0.1% in the North and Baltic Sea, and within 200nm the coast of the

US and Canada (North American ECA). Table 4 illustrates how these policies have altered

contributions and exposure by income group. Absent these policies, mortality associated

with shipping would be over 375,000 deaths per year. Likewise, across income bracket and

region, contributions and exposures would have been substantially higher. For example,

consumption by high income countries would contribute about 37,500 deaths in the lowest

income countries.

The ECAs have a relatively minor impact on the overall mortality (a reduction in

mortality of roughly 9,100 deaths). Although vessel responses to the ECAs can somewhat

undercut the reductions in mortality [28], here we assume vessel behavior is fixed. Due to

their locations, these ECAs almost exclusively reduce mortality in high income countries and

mainly from mortality related to consumption in these high income countries. Almost 70%

of the overall reduction in mortality from ECAs is contributions of high income countries to

mortality in other high income countries.

The global fuel sulfur limits imposed by IMO 2020 are much more consequential, with

over 170,000 lives saved. Because this policy reduces contributions and exposure in a roughly

proportional manner, in an absolute sense this has the largest impacts on across country

contributions, which tend to affect low income countries. Overall, IMO 2020 reduced

high and middle income countries’ contributions to mortality in low income countries by

almost 32,000 (19,000 + 13,000) deaths per year. These IMO 2020 results provide a strong

illustration of a key theme in the environmental justice literature: broad regulations that

reduce environmental damage – even through a uniform policy – tend to reduce pre-existing
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environmental inequities [29].

Sensitivity Analysis Uncertainties in our estimates of exposure and contributions arise

from both the economic data used to construct the input-output matrix and the measurement

of the marginal mortality from shipping. Like other studies of this type, we are limited in our

ability to explore the uncertainties in the economic data because most global input-output

datasets, including the one used here, do not report uncertainties in the economic statistics.

However previous research – in the context of greenhouse gas emissions – suggests that the

main source of uncertainties is in the emissions calculations as opposed to the input-output

data [30, 31]. We therefore explore the sensitivity of exposure and contributions due to key

assumptions in the marginal mortality of shipping.

Table 5 illustrates that while the estimates of total mortality due to shipping depend

heavily on parameter assumptions, the relative contributions of regions to mortality in other

regions are relatively insensitive. The first row presents our central results with IMO 2020 in

place. The next four rows display results using alternative calibrations of the concentration-

response function used in the literature (see Section A in the Supplemental Material). The

next two rows display results using upper and lower baseline mortality rates from Across

these assumptions, our estimates of total mortality range from 106,000 to 308,000, but the

relative contributions of regions to mortality in other regions are essentially unchanged.

The remaining columns report results using different assumptions about vessel technologies.

Using global average fuel economy (tons fuel per kg-km) estimates by vessel type from [24]

or [19] illustrates the important trends in vessel fuel efficiency over the last decade and shows

that the spatial distribution of vessel technology – which is captured in our central results –

does not play a key role in the distribution of mortality. The final set of results – which forces

containerized goods to travel on minimum distance routes while assuming global average fuel

economy from [19] – illustrates that indirect container shipments have an important impact

on global mortality, roughly 13,000 deaths.

3 Discussion

Using newly constructed estimates of the marginal mortality from shipping and input-output

methods, we quantify the disparities in contributions and exposure to the air pollution related

mortality impacts of shipping, accounting carefully for the role of global value chains. We

find that high income countries bear less than 10% of mortality while contributing almost

35%. For the median country, over 95% of shipping related mortality is not associated with

their own consumption production. Consumption in upper and middle income countries

10



contributes to over 40,000 shipping related deaths per year in low income countries with

current policies. Prior to IMO 2020, this transfer was much larger at over 82,000 deaths per

year.

Global value chains are a key driver of the observed disparities. GVCs both concentrate

mortality in countries close to major shipping lanes, and spread the impacts of countries’

consumption across the world so that income – as opposed to non-income factors – primarily

determines contributions to mortality. Both of these factors ultimately amplify the disparities

in exposure and contributions to shipping related mortality. We show that the mortality

embodied in trade, across all productions stages, is both much larger and more geographically

distant from final consumption than if only the direct flows are considered (as in [23]). For

example, only 15% of the mortality from China to US trade is a result of the direct flows.

Studies based on vessel inventories – and not trade flows – are not able to reveal these

patterns. Moreover, methods for attributing responsibility for shipping mortality without

accounting for value chains – such as those based on origin or destination country or location

of the bunker purchase as suggested by the UNFCCC in the context of GHGs [32] – will

misrepresent the disparities in exposure and contributions. In particular, the contribution of

lower income countries will be overstated (and those of higher income countries understated)

since much of the shipping to/from lower income countries actually serves the supply chains

for richer countries (Table A.2).

From a policy perspective, our results provide some guidance for addressing the disparities

in the health consequences in global shipping. Further tightening the sulfur limit beyond

IMO 2020 would reduce disparities in an absolute sense, but with unknown and potentially

large costs. While current ECAs targeting sulfur have tended to protect higher income

countries, establishing similar ECAs in the most heavily trafficked or highest mortality areas

– like the Mediterranean Sea– would not only reduce aggregate mortality but would weaken

the disparities across income groups (Table A.3). With IMO 2020 in place, efforts to reduce

shipping related mortality might be better focused on NOx. NOx ECAs could – depending

on the technology used for compliance – impact mortality across broader areas than sulfur

ECAs because compliant vessels would generate less NOx along their entire voyage and non-

compliant vessels might shift to unregulated routes. However, there is skepticism about the

efficacy of NOx ECAs as currently implemented [33].

Our results also inform current discussions related to the decarbonization of maritime

transport. A full decarbonization would likely provide both substantial health co-benefits

– since low carbon technologies also tend to contribute less to particulate matter – and

mostly eliminate the disparities across income groups and geography. The health impacts of

proposed “green corridors,” which aim to decarbonize specific shipping lanes [34], are much
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less clear. If the regulated lane does not occupy a central position in value chains (e.g. it

is primarily moving raw materials or final goods), then these types of policies may prevent

only a relatively small fraction of the total mortality, or GHG emissions, generated by the

underlying trade between the countries involved.

Given our finding that the shipping of fossil fuels accounts for 35% of global shipping

mortality, even broader climate actions – like improvements in the energy efficiency of

production – could generate meaningful reductions in mortality due to shipping. Reducing

energy inputs per dollar of output by 25% for all production sectors globally, holding all else

equal, leads to a reduction of over 15,000 deaths from shipping with most of these reductions

in low and middle income countries (Table A.4). These effects, though large, are likely to be

considerably smaller than the mortality impacts of reduced fossil fuel use in production.

More general economic trends that alter supply chains – such as the relocation of

production activities to firms’ home countries [35] or “reshoring” – will also impact mortality

related to shipping. Reducing the share foreign goods in both production and consumption in

the US by 25% (and scaling domestic goods accordingly) would lead to a reduction of about

3,500 deaths globally (Table A.4). This reduction in mortality occurs mainly in low and

middle income countries, but is almost exclusively linked to in consumption higher income

countries (the US and its close trading partners). A similar reshoring counterfactual for

China would also lead to about 3,500 fewer deaths, though a larger share of this reduction

is linked to other country consumption due to China’s central role in global value chains.

This analysis is only a rough accounting of reshoring scenarios because it does not account

for market adjustments or changes in mortality linked to production or other transportation

modes.

4 Methods

Our analysis relies on a global top-down accounting of shipping mortality that links trade

flows – quantities of goods moving between and within countries – to trade flow specific

estimates of the marginal mortality – deaths associated with the shipping of a unit of goods.

Other examinations of shipping related mortality have used bottom-up methods based on

detailed vessel activity data [21, 8], or assessed a single trade flow [23]. Our approach enables

us to quantify the mortality associated with all trade flows, and to attribute shipping related

mortality to final consumption. A full exposition of our modeling framework and data are

available in the Supplemental Material.
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4.1 Top-Down Accounting of Mortality from Shipping

In the top-down accounting we consider N countries and S sectors.The trade flows, xst
ij , are

the purchases of good s from country i used by sector t in country j, and X = {xst
ij}. Final

demand is Y s
i , so total output for each sector is Xs

i =
∑

jt x
st
ij + Y s

i or in vector form Xtot

The multiregion input-output (MRIO) matrix A = {astij} = X ∗ diag(1/Xtot) describes the

dollars of good s from country i used by sector t in country j.

The marginal mortality in country k from moving a dollar of good is to jt are dstijk.

These measures map a dollar of each trade flow to a quantity and geographic distribution

of emissions produced – which depends on the vessels, ports and routes used – then link

these emissions to country-specific mortality accounting for the physical transport of the

pollutants and the location of population. Marginal mortality is calculated as:

dstijk = ssij ∗ wvsij ∗
∑
ode

θsijod ∗ πs
ode ∗ms

odek (1)

where ssij is the share of each trade flow that travels by sea and wvsij is the weight-to-value

ratio for good s produced in country i and imported by j. θsijod is the share of good s

shipped from i to j that travels between ports o and d and πs
ode is the probability that

vessels carrying good s from port o to port d use edge e of the maritime network. Finally,

ms
odek is the mortality in country k associated with moving a ton of good s between port o

and d on edge e of the maritime network. Note that the damage matrix does not vary with

using sector t (i.e., dstijk = dsijk).

Global mortality from shipping in country k is therefore
∑

ij,st d
st
ijk∗xst

ij . Mortality related

to a country’s imports, exports, or a particular trade flow could be calculated similarly after

zeroing out the appropriate elements of x.

4.2 Attributing shipping mortality to final consumption

Given our top-down accounting, we can use input-output methods to calculate the shipping

mortality associated with final consumption. Input-output methods are often used to

measure supply chains [36] and to quantify the environmental impacts embodied in

consumption [37, 10] and trade [12, 5], but have never been applied to air pollution from

shipping.

Given the input-output matrix, the Leontief inverse matrix can be calculated as L =

A0 +A1 +A2 + . . . = (I −A)−1 The powers of A denote the inputs required to produce each

good at the production stage given by the power (so A1 = A are the inputs used to produce

each good, and A2 are the inputs used to produce the inputs of each good). Therefore, the
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elements of L contain the additional units of each good that are needed – at any production

stage – to produce a unit of each good.

The N by N ∗ S matrix D = {
∑

is a
st
ij ∗ dstijk} contains the mortality in each country k

(rows) associated with the shipping of all inputs used to produce a unit of good jt. For

example, if shipping a dollar of output from sector 1 to sector 2 causes 1 death, and the

production of a dollar in sector 2 requires 0.5 dollars of goods from sector 1, then the total

mortality from shipping inputs to sector 2 are 0.5.

The mortality in each country from the consumption of a dollar of each good in each

country can be calculated as d̃ = DL. Therefore, the total mortality (in each country)

associated with the consumption of each country can be calculated as D̃ = DLY , where Y

is a N ∗ S by N matrix with the rows representing the final consumption vectors of each

country and D̃ is an N by N matrix. An can be substituted for L in these equations to

obtain the mortality vectors for production stage n.

Contributions to mortality of bilateral tradeflows are calculated by adding columns to

the MRIO (and corresponding rows of zeros). The elements of the columns are the dollars

of good s from country i that moves to country j, either as an intermediate input or for

consumption, per dollar of total trade between country i and j. The corresponding elements

in A therefore represents the goods embodied in each trade flow.

We decompose a country’s exposure to mortality as Dk = D̃own
k +D̃mx

k +Dun
k or the sum of

mortality due to own country consumption, due to imports and exports to the country that

are ultimately embodied in other countries’ consumption, and due to activities unrelated to

country k. Dk are the row sums of D̃. and Down
k are the diagonal elements of D̃. Dmx

k can

be calculated as the row sum of the off-diagonal elements of D̃mx, where D̃mx is calculated

in the same manner as D̃ but after zeroing out the marginal mortality for countries other

than the importing and exporting countries in dstijk (that is where i ̸= k or j ̸= k). Third

party related mortality can be calculated as Dthird
k = Dk − D̃own

k − D̃IJ
k . Note that a similar

decomposition can be done for contributions, Di, but in this case the third-party term would

be a country’s contribution to mortality in countries that do not contribute to the value

chains utilized by country i.

4.3 Data

MRIO Matrix The MRIO is obtained from the Global Trade Analysis Project (GTAP)

11B database [38]. We use the 2017 reference year and aggregate to 20 sectors and 129

countries/regions (see Supplemental Material).
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Sea Shares and Weight to Value Ratios Sea shares are constructed from 2018 data

from the UN Comtrade database [39]. We use 2018 data to maximize geographic coverage,

while still avoiding the pandemic affected years starting in 2019. We calculate sea shares for

our region and sector definitions after assigning any road and rail flows to sea if a land route

between the trading partners is unlikely. This adjustment corrects for Comtrade reporting

the mode on which goods leave the country as opposed to its longest leg. Domestic shares

are constructed using average mode shares between a country and its contiguous trading

partners if those contiguous partners total at least 5% of total trade. We fill in missing

shares using the reverse bilateral pair, or subregional/regional averages.

Weight-to-value ratios are constructed at the country-pair by sector level from the 2018

BACI product-level trade database [40].

Port Shares There are no global databases of trade flows at the port level. Following

previous studies [23, 41, 26], we obtain θsijod mainly from a global dataset of port calls

purchased from Astra Paging. For non-containerized goods, we calculate the weight of

goods moved between ports using the vessel calls data, and use these flows to calculate port

shares. We use an vessel inventory model to calculate port-to-port flows of goods to account

for the possibility that bulkers and tankers may lade and unlade at multiple ports. For the

country pairs that we do not observe port flows (including containerized goods) we assign

port shares proportionally to the total weight of goods arriving/departing at each port-pair.

Edge Probabilities The edge probabilities allocate vessels moving between two ports to

edges of a maritime network. Our maritime network is from Eurostat’s SeaRoute program

but has been updated to better reflect observed vessel routes. The edge probabilities capture

differential routing behavior across vessel types, which plays a role in the distribution of

shipping activities and emissions. Tankers, bulk carriers and other cargo ships mostly operate

on flexible, non-scheduled routes moving goods directly between origin and destination ports

[41]. We therefore assume that this set of ships takes the minimum distance route between

port pairs. Container ships typically offer liner service (scheduled, fixed routes) using a hub-

and-spoke model, where goods are moved are transshipped from smaller ports to hubs, then

between hubs, before finally moving to the destination port [26]. We capture the indirect

shipping and transhipment behavior by calibrating a routing model to match observed vessel

traffic [42, 26].

Edge Mortality We link shipping emissions to mortality using source-receptor (SR)

matrices that described the increased mortality (in each country) associated with one ton
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of pollution (PM2 · 5, SOx and NOx) emitted at each cell of a grid that covers the maritime

network. Source-receptor matrices are used in a range of studies [43, 44, 45] and this approach

– as opposed to simulating mortality associated with emissions on each link of the network

– greatly reduces the computational burden of estimating mortality. Mortality associated

with the movement of a ton of goods on each edge in the maritime network is the sum across

all grid cells of the emissions released in each cell on that edge – distance traveled in the grid

cell times a good specific fuel use factor (fuel user per unit of shipping) times an emissions

factor – multiplied by the mortality due to a ton of pollution emitted in that cell from the SR

matrices. The SR matrices were constructed using a global version of InMap [46, 47]. The

resolution of the matrices – grid cells in the open ocean are 5° by 4°, while cells intersect land

are 2.5° by 2° – broadly matches the computational grid used in [47]. In our main results

we consider the cardiovascular and lung cancer related mortality associated with elevated

PM2.5 using log-linear relative response functions parametrized to be consistent with [8] and

baseline cause-specific mortality rates from [48]. We also generate results with the high and

low parameter estimates from [8] and with two other commonly used parameter estimates

[49, 50].
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5 Tables and Figures

Domestic International Total

Total Value (billion $) 123234 21458 144692
Merchandise 39586 17077 56663

Sea Value (billion $) 11313 8966 20279
Weight (billion tons) 16.3 9.5 25.7
Transport Services (trillion t-km) 26.8 91.1 117.9
Fuel (million tons) 67.3 166.1 233.4

Emissions (million tons)
PM2.5 0.14 0.38 0.52
SOx 0.55 1.53 2.08
NOx 6.32 15.21 21.53

Mortality 93773 111376 205149
PM2.5 3453 3493 6945
SOx 15753 18108 33861
NOx 74567 89776 164343

Notes: Domestic versus international is determined by ultimate origin
and destination countries of the goods traded. Merchandise row excludes
services.

Table 1: Baseline Shipping Activity and
Mortality
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0.00 18.72 37.45 56.17 74.90

mortality per million people

(a) Exposure

0.00 40.84 81.68 122.52 163.36

mortality per million people

(b) Contribution

exposure-contribution ratio

(c) Exposure-Contribution Ratio

Notes: gray shading over oceans depicts predicted fuel consumption by maritime vessels in each grid cell.
Darker shades represent higher percentiles. In panels (a) and (b) the upper bound of color bar is 25%
below maximum mortality.

Figure 1: Geographical Distribution of Exposure and Contributions
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Global Low Middle High

Total 205149 54328 131340 19481
Own Consumption 74909 11472 59528 3909
Own Imports/Exports 35818 4988 28182 2648
Other Country Activity 94422 37868 43631 12924

Notes: Values in table are total mortality. Rows decompose
a country’s exposure to mortality resulting from own country
consumption, from imports and exports to the country that
are ultimately embodied in other countries’ consumption, and
from activities unrelated to that country. Calculations for each
component of the decomposition are discussed in Methods.

Table 2: Decomposition of Contributions
to Mortality
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(a) Exposure and Contributions by Country Groups

(b) Sectors Mediating Exposure and Contributions Across Income Groups

Panel (a): thousands of deaths by group reported in parentheses; income groups are based on World Bank
Income Classifications as of 2017. Panel (b): expands left side of panel (a) to show contributions of goods
consumed and shipped; aggregated to 10 sectors for clarity.

Figure 2: Shipping Mortality Exposure and Contributions
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0.00 0.13 0.25 0.38 0.51

mortality per billion $

(a) Stage 0

0.00 0.13 0.25 0.38 0.51

mortality per billion $

(b) Stage 1

0.00 0.13 0.25 0.38 0.51

mortality per billion $

(c) Stage 4

0.00 0.13 0.25 0.38 0.51

mortality per billion $

(d) Stage ∞

Notes: Shading depicts cumulative mortality through each production stage in each country. Upper bound
of shading is 25% below maximum mortality.

Figure 3: Mortality Embodied in Germany-US Trade Over the Supply Chain
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0.00 1.62 3.24 4.86 6.48

mortality per billion $

(a) Stage 0

0.00 1.62 3.24 4.86 6.48

mortality per billion $

(b) Stage 1

0.00 1.62 3.24 4.86 6.48

mortality per billion $

(c) Stage 4

0.00 1.62 3.24 4.86 6.48

mortality per billion $

(d) Stage ∞

Notes: Shading depicts cumulative mortality through each production stage in each country. Upper bound
of shading is 25% below maximum mortality.

Figure 4: Mortality Embodied in China-US Trade Over the Supply Chain
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Notes: Bars reflect cumulative mortality (1000s of deaths) through each stage in the value chain. Stage 0 is
the mortality associated with the shipping of final goods, stage 1 captures mortality associated with the
shipping of final goods plus the shipping of inputs to those goods, etc. Stage ∞ is the mortality associated
with all stages of production.

Figure 5: Regional Contributions to Mortality Over The Supply Chain
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Stage 1 2 3 5 ∞

mortality per capita 0.49 0.59 0.64 0.70 0.73
(0.06) (0.05) (0.05) (0.04) (0.04)
[0.31] [0.48] [0.58] [0.68] [0.74]

mortality/$ -0.51 -0.41 -0.36 -0.30 -0.27
(0.06) (0.05) (0.05) (0.04) (0.04)
[0.33] [0.31] [0.30] [0.29] [0.29]

$ sea/$ -0.22 -0.21 -0.20 -0.18 -0.17
(0.06) (0.05) (0.04) (0.04) (0.03)
[0.10] [0.15] [0.15] [0.16] [0.17]

kgkm/$ sea -0.20 -0.11 -0.07 -0.05 -0.04
(0.04) (0.03) (0.02) (0.02) (0.02)
[0.20] [0.10] [0.07] [0.04] [0.03]

mort/kgkm -0.09 -0.09 -0.09 -0.08 -0.07
(0.04) (0.03) (0.03) (0.03) (0.02)
[0.04] [0.06] [0.07] [0.07] [0.07]

Notes: Coefficients from linear regressions of the natural log of
variables on the natural log of per capita income by country.
Outcome variables are cumulative values up to and including the
reported production production stage. Standard error of coefficient
in parentheses and R2 in square brackets. N = 128 for each
regression since we drop a very minor region for which we lack port
information. The final three rows decompose mortality per dollar

as mort
$

= $sea
$

∗ kgkm
$sea

∗ mort
kgkm

or the share of goods shipped by

sea, shipping services per dollar shipped and mortality per unit of
shipping.

Table 3: Regressions of Per Capita
Contribution on Per Capita Income
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No ECAs ECAs IMO 2020

Total 375693 -9114 -170544

Low → Low 44757 -18 -22991
Low → Middle 28871 -54 -8786
Low → High 4432 -516 -2615

Middle → Low 26324 -50 -12607
Middle → Middle 126045 -173 -53391
Middle → High 13760 -1352 -8163

High → Low 37534 -150 -18688
High → Middle 62797 -586 -24196
High → High 31173 -6216 -19106

Notes: First column reports total emissions with no
policies in place (fuel sulfur = 2.7%). ECAs column
reports change in mortality when North and Baltic
Sea and North American ECAs are in place with a
fuel sulfur limit of 0.1%. IMO 2020 column reports
additional change in mortality when fuel sulfur limit
outside the ECAs is set to 0.5%.

Table 4: Mortality and
Contributions Under Recent Policy
Changes

Low → Middle → High →

Total Low Middle High Low Middle High Low Middle High

Central 205149 10.6 9.8 0.9 6.7 35.4 2.7 9.2 18.8 5.9
CR Sofiev (Low) 106118 11.3 9.6 0.8 7.1 34.7 2.6 9.8 18.6 5.6
CR Sofiev (High) 307991 10.4 9.8 0.9 6.6 35.6 2.8 9.0 18.9 6.0
CR Krewski 121251 14.3 8.3 1.0 8.3 30.0 3.2 12.0 16.4 6.6
CR LePeule 272655 14.3 8.3 1.0 8.3 30.0 3.2 12.0 16.4 6.6
Base Mort Low 179481 10.8 9.8 0.9 6.7 35.2 2.7 9.3 18.8 5.8
Base Mort Upper 230472 10.5 9.9 0.9 6.7 35.8 2.6 9.1 18.9 5.7
t/kgkm Cristea 233039 10.0 9.7 0.8 6.7 36.1 2.6 9.7 19.1 5.2
t/kgkm IMO 187408 10.1 9.5 0.8 6.9 33.9 2.6 10.7 19.8 5.6
Direct 174519 10.3 9.2 0.8 7.2 33.4 2.5 11.2 19.8 5.6

Notes: Sofiev [8], Krewski [49] and LePeule [50] rows alter the concentration-response function to other
commonly used calibrations in the literature. The base mortality The t/kgkm rows use alternative global
averages, by vessel type, for the fuel efficiency of vessels [24, 19]. Direct row assumes container vessels travel
directly between origin-destination ports while using the global average fuel efficiency from [19]

Table 5: Mortality and Contributions Under Alternative Assumptions
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Supplemental Material for “Global Value Chains Drive Disparities in the
Health Consequences of Shipping”

April 2025

A Methods and Data

A.1 Attributing shipping damages to final consumption

We use input-output methods to calculate the shipping damages associated with final

consumption. There are N countries and S sectors. Final demand is one of the S sectors.

Define xst
ij as the purchases of good s from country i used by sector t in country j, and

X = {xst
ij}. Final demand is Y s

i , so total output is Xs
i =

∑
jt x

st
ij + Y s

i or in vector form Xtot

The input-output matrix A = X/diag(Xtot) describes the dollars of good s from country i

used by sector t in country j. Define L = (I − A)−1 = A0 + A1 + A2 + . . . as the Leontief

inverse matrix. The elements of L contain the additional units of each good that are needed

(directly or indirectly) to produce an additional unit of each good. For example, Lst
ij is the

additional amount of is that needs to be produced, for use at any stage of production, to

support an additional unit of jt.

The marginal mortality in country k from moving a dollar of good is to jt (dstijk) are:

dstijk = ssij ∗ wvsij ∗
∑
ode

θsijod ∗ πs
ode ∗ms

odek (2)

where ssij is the share of each trade flow that travels by sea and wvsij is the weight to value

ratio for good s produced in country i. θsijod is the share of good s shipped from i to j

that travels between ports o and d and πs
ode is the probability that vessels carrying good s

from port o to port d use edge e of the maritime network. Finally, ms
odek is the mortality in

country k associated with moving a ton of good s between port o and port d on edge e of

A.1



the maritime network. Note that the damage matrix does not vary with using sector t (i.e.,

dstijk = dsijk).

The total mortality from shipping, at any production stage, in each country that is

eventually embodied in the vector (or matrix) of consumption Y is:

D̃ = DLY

where N by N ∗ S matrix D = {
∑

is a
st
ij ∗ dstijk} contains the mortality in each country k

(rows) associated with the shipping of all inputs used to produce a unit of good jt.

A.2 Multi-region Input-output Matrix

To obtain the matrix X, we use the 2017 reference year from the GTAP 11B database.

We aggregate this database to 20 sectors and 129 countries/regions (Tables A.5 and A.6).

Consistent with the GTAP database, we assume that import shares (the share of good s

used in country j from country i) are constant across industries and final consumers.

A.3 Marginal Mortality From Shipping

To obtain the marginal mortality from shipping, dstijk, we first allocate each bilateral (country-

to-country) trade flow to vessel types and port pairs, then to routes through a maritime

network and ultimately to the quantity and location of emissions from shipping. We then

calculate mortality associated with these emissions using a global source-receptor matrix

that we constructed using a reduced complexity air quality model. This source-receptor

matrix describes the increased mortality (in each country) associated with a ton of pollution

emitted at each cell of a grid that covers the maritime network. The source-receptor approach

– as opposed to simulating mortality associated with emissions on each link of the network

– substantially reduces the computational burden of estimating mortality. We calculate

marginal mortality for multiple pollutants (PM2.5, SOx and NOx), though we drop this

A.2



subscript throughout for clarity.

The mortality associated with the movement of goods on each edge are the sum across

all grid cells of the emissions released in each cell from a ton of good s moving on edge e

multiplied by the mortality due to a ton of pollution emitted in that cell (mdkg):

ms
odek =

∑
g

(kmeg ∗ f s
od ∗ ef s

ode) ∗mdkg (3)

where kmeg is the kilometers of edge e in grid cell g, f s
od is a fuel consumption factor (kg fuel

per km-kg of shipping services), and ef s
ode is an emission factor (kg of emissions per kg fuel).

The fuel consumption and emission factors vary by port pairs to account for geographical

differences in the vessel fleet. The emissions factor is edge specific to account for ECAs,

where vessels are required to use low sulfur fuels. The term in parenthesis is, therefore, the

emissions released in cell g from a kg of good s moving on edge e, while mdkg is from the

source-receptor matrix.

A.3.1 Mode Shares

Mode shares, ssij, are derived from 2018 data from the UN Comtrade database [1]. Mode

coverage in the Comtrade database is increasing over time. We use 2018 data to maximize

coverage, while still avoiding the pandemic affected years starting in 2019. The Comtrade

data reports values imported/exported between bilateral pairs of countries for 6-digit HS

sectors. These flows are broken down by mode of transport for 82 countries (and 35-40% of

value of trade reported in the database)1. We aggregate to our region and sector definitions

and four modes (road, rail, air, sea, other) using FOB values when available and CIF values

otherwise.

Given the structure of the Comtrade data, we can potentially calculate mode shares for

the same bilateral flow using values reported by either the importer or the exporter. We use

importer data when available – because importer data tends to be considered more reliable

1Mode shares are available for 40% of exports that report FOB values and 35% of imports that report
CIF values.
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– and only use the exporter (mirror) data when importer data is missing.

Our interest is the mode used by the primary leg of the journey. However, the mode

reported in the Comtrade database represents the mode used when the goods left/entered

the reporting country. If goods use foreign ports (e.g., leaving a country by road to get to

a foreign port before traveling by sea to the final destination), which would be the case for

landlocked countries, then the raw Comtrade data would greatly overstate the proportion

of goods on land based modes. We address this issue by assigning any road and rail flows

to sea if a land route between the trading partners is unlikely.2 The key assumption here is

that any goods leaving a country by land for a country for which a land route does not exist

must travel by sea.

We fill in any missing international mode shares using the first available of the following

mode shares (by sector): 1) those for the reverse bilateral pair (i.e., use the shares from

country j to country i for the i to j flow); 2) subregion-to-subregion averages; 3) region-

to-region averages; 5) subregion to any other subregion averages; 6) region to any other

region averages. Regions and subregions are based on UN Statistical Division definitions.

Intranational mode shares are constructed in two ways. First, for countries/regions in our

data set that aggregate over multiple countries in the UNCTAD data we use the within

country/region mode shares. Second, we use average mode shares between a country and its

contiguous trading partners if those contiguous partners total at least 5% of total trade. Then

we fill in missing values with the first available subregional, regional or global contiguous

average mode shares.3

A.3.2 Weight-to-Value Ratios

Weight-to-value ratios are calculated at the country-pair by sector level from the 2018 BACI

product-level trade database [2]. We winsorize the weight-to-value ratios at the 5th and

95th percentile, and replace any missing values with exporter-sector averages and then, if

2We assume that land routes are possible if both countries are either contiguous or in the same UN
Statistical Division region, and if both countries are not islands.

3We also ensure that the sea share for domestic trade flows for landlocked countries is zero.
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still missing, global averages at the sector level.

A.3.3 Sector-to-Vessel Type Categorization

We assign sectors to vessel types following prior literature [3]. Broadly speaking, raw

materials are carried by bulkers (agriculture, coal, minerals) and tankers (oil, natural gas and

refined oil products). Container ships are assumed to carry manufactured goods (machinery,

equipment, manufactures) , while general cargo ships carry more unique products (chemicals,

wood). These categorizations are consistent with [4].

A.3.4 Ports and Port Shares

There are no global databases of trade flows at the port-to-port level. Most researchers have

inferred these port shares from observed vessel port calls or bill of ladings data [5, 6, 7],

although modeling based approaches have also been used [8]. Following this earlier research,

we obtain θsijod mainly from a global dataset of port calls for June 1st, 2014 to May 31,

2015 (purchased from Astra Paging). For non-containerized goods, we calculate the weight

of goods moved between ports using the vessel calls data, and use these flows to calculate

port shares. For the country pairs that we do not observe port flows we assign port shares

proportionally to the total weight of goods arriving/departing at each port-pair (θijod =

tonso
tonsi

∗ tonsd
tonsj

, where tonsi and tonsj are the total weight of goods arriving/departing the

country.) For containerized goods, we do not observe od flows in the port calls data (due to

transhipment), so, as discussed above, we calculate port shares proportionally to the weight

of goods arriving/departing each port pair.

Our sample of port calls contains all commercial cargo and tanker vessels operating

world wide.4 For each vessel, we observe the date/time and current draft when it enters and

exits a port zone. Using IMO numbers we merge in vessel characteristics from a database

obtained from Clarksons Research and Marine Traffic. These vessel characteristics include

an aggregate vessel type grouping (container, tanker, bulker, general cargo), maximum draft

and deadweight (DWT).

4We exclude ferries and smaller ro/ro vessels.
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Since the draft data is likely more reliable when vessels are entering ports, we set a vessel’s

draft upon leaving a port to be equal to the draft reported at the following entrance.5 This

corrects unreasonably large changes in draft between an exit and the following entrance. We

construct a data set of port calls by pairing consecutive entrances and exits.

Following [10] we estimate the total weight of goods carried by a vessel as d−db
dm−db

∗DWT ,

where d is observed draft, db is ballast draft (draft when the vessel is not loaded), dm is

maximum draft and DWT is the vessels deadweight in tons. We estimate ballast draft as

a fraction of maximum draft that varies by vessel type. Like [10] we use 0.55 for container

ships. The fractions for other vessel types range from 0.44 to 0.52 and are derived from

engineering relationships (e.g., [11]). The (net) weight of goods laden/unladen at a port

is therefore the difference in total weight carried between the entrance and exit. We these

values we can calculate the total weight of goods on vessels moving between two ports, and

the total weight of goods laden and unladed at each port.

To calculate port shares for non-container vessels, we need to calculate the port-to-port

flows of goods. A simple calculation of the weight laden/unladen at two consecutive ports

is insufficient for this purpose because bulkers and tankers may lade at multiple ports,

before then unlading at multiple ports. We use a simple vessel inventory model to calculate

port-to-port flows of goods that account for this behavior. This model tracks the lading

port of the goods on board the vessel. The goods unladen at any port are assumed to

come proportionally from the goods currently on the vessel and after each unlading step the

inventories are updated.

For example, suppose a vessel loads 20 tons of goods at port A and 80 tons of goods at

port B, then unloads 50 tons at port C. The model would treat this as 10 tons moving from

A to C and 40 tons moving from B to C. Suppose the vessel then picked up another 20 tons

from port D, before unloading at port E. The additional flows would be 10 tons from A to

5The draft data reported in AIS data is entered by vessel operators. The draft entered upon an entrance
is likely more reliable because reporting draft is much more important when entering a port, when this
information needs to be communicated to port authorities and is crucial to prevent groundings. Similar
adjustments have been made other studies that rely on AIS data [9].
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E, 40 tons from B to E and 20 tons from D to E.

The ports included in our analysis are selected in the following way. Since this port calls

dataset uses detailed port definitions (e.g., Long Beach and Los Angeles are accounted for

separately), we group ports based on geographic proximity within countries using a clustering

algorithm after removing very small ports (DBSCAN using haversine distance, ϵ=50km and

minimum group size of 1). After clustering, we keep any port that accounts for at least 1%

of national weight handled (laden or unladen) by vessel type. We also designate “major”

ports in each country as the largest ports that cumulatively make up 90% of total national

weight handled. When constructing port shares, we only consider major port pairs for

international flows, but all ports are included when construction port pairs for intranational

flows. Therefore the very smallest ports only move goods to the larger ports in the same

country.

A number of countries do not have ports in the port calls data. For landlocked countries,

we assign trade flows to the two closest ports to capital city of the land locked country (for

each vessel type). For countries with important ports that are missing in the port calls data

(which occurs for a few Central American countries), we include the largest port in each

country based on total vessel calls in 2019 reported by the UN (https://comtrade.un.

org/data/monitor#AISPort). To construct the size of each these port we multiply total

vessel calls by the global average weight carried per vessel call by type. The final dataset

contains 684 ports.

A.3.5 Edge Probabilities

The edge probabilities, πs
ode, are the product of port-to-port probabilities πs

odmn and route

probabilities πs
mne. The route probabilities, πmne, allocate vessels moving between port m

and port n to edges (e) of the shipping network. We determine πmne by finding the minimum

cost (distance) route between each port pair through the maritime network using Djikstra’s

algorithm. If edge e is on the route between m and n then πmne = 1, otherwise this element

is zero.
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The shipping network is from Eurostat’s SeaRoute program (https://github.com/

eurostat/searoute), which is based on Oak Ridge National Lab’s Global Shipping

Lane Network with increased resolution around Europe based on AIS data. We

updated this network in two ways. First, we added edges between each port in

our analysis and the closest node in the maritime network. Second, we added

edges to the network based on observed vessel trajectories if port-to-port routes

based on the original network are substantially longer (300km) than the observed

trajectories. We add edges in this way for the top 100 ports by tonnage. The

observed vessel trajectories are described here: https://towardsdatascience.com/

creating-sea-routes-from-the-sea-of-ais-data-30bc68d8530e.

The port-to-port probability, πs
odmn, is the probability that a good ultimately moving

from an origin port o to destination port d travels between any other pair of ports m and n.

To broadly follow the structure of shipping markets, goods carried by tankers, bulk carriers

and other cargo ships are assumed to move directly between origin and destination ports

along the least cost route. For these vessels πs
odmn equals 1 when o = m and d = n, and is

otherwise zero.

For container ships, we use the routing model from [12] to obtain values for πs
odmn that

captures indirect routing and transhipment. Container ships operate on a network that

contains P ports. The ad-valorem costs of moving from port m to port n – which we refer

to as link mn – is given by tmn. Transportation costs are set to infinity for links that do not

exist in the transportation network.

There are many combinations of port-to-port links that connect any origin and

destination port. The total costs of moving goods on a particular set of links (a route)

between two ports depends on the product of the link costs across all links used and an

idiosyncratic route-level shock. The route-level shock introduces a dispersion in route choice

that better reflects the data, particularly in the context of congestion [7].

Assuming that the route-level shock is distributed Fréchet with a shape parameter α,
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then the transportation costs for moving goods through the network from port o to port d

are:

τod = (I − T−1)◦(−α) (4)

where T = {t−α
mn}, and ◦ refers to the Hadamard (element-wise) power. The port-to-port

probabilities are:

πodmn =

(
τomtmnτnd

τod

)−α

. (5)

We calibrate link-level trade costs to match observed port-to-port flows derived from

the port calls data using a procedure from [7]. This allows the calibrated model to reflect

observed indirect shipping and transhipment.

We assume that link costs are t−α
mn = 1

1+exp (Zβ)
. Z contains factors that affect link-level

shipping cost, like distance and traffic. α is set to 8 [7].

Given Z and β the predicted port-to-port probabilities are π̂odmn (β, Z) and the predicted

total tonnage of goods moving on each link in the transportation network is:

ŵmn (Y, β) =
∑
od

π̂odmn (Y, β)wod (6)

where wod =
∑

ijt

∑
s∈Scont

Xst
ij ∗ssij∗wvsij∗θsijod is the tonnage of containerized goods ultimately

moving from port o to port d (Scont is the set of sectors that are containerized). We then

estimate β using generalized method of moments (GMM) to minimize the distance between

the predicted and observed tonnage traveling on each link: ŵmn (Y, β)−wmn. The moments

are weighted by the inverse of observed link-level tonnage and exclude links between ports

in the same countries. We exclude the domestic links because tonnage on these links will be

underrepresented in areas where significant shares of coastal shipping occurs on vessels that

are not in global vessel inventories, such as China [13]. Given an estimated vector of β we

can obtain the full matrix of link-level costs, route-level costs, and port-to-port probabilities.

It is important to note that our analysis does not rely on a causal interpretation of β. Rather
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the goal is to find link-level costs that are as consistent with both observed trade flows and

container ship patterns.

The selection criteria for the ports included in the container network are discussed above.

We drop small links from the network – less than 2% of total origin or destination port

tonnage – provided there are fewer then 10 total vessel trips observed on this route in the

data. We consider specifications that include the logs of distance, origin, and destination

traffic and link-level traffic. Traffic is measured as the total weight of goods carried by

all the vessels that arrive/depart from each port or that are moving on a link. The GMM

objective function has multiple local minima. To obtain a plausible global minimum we start

the optimization routine from 250 random initial vectors, then take the minimum obtained

across all initial vectors.

Results of our calibration procedure are reported in Table A.8. Column (1) reports model

fit when distance is the only determinant of link-level transportation costs and the coefficient

on distance is set to 1. The correlation between observed and model predicted link tonnage is

0.4, though the correlation using logged tonnage is somewhat higher. The calibrated versions

fit much better. When link-level costs depend on distance and origin/destination tonnage

model fit – as measured by root mean weighted squared error or the square root of the GMM

objective function – improves dramatically. The correlation between observed and predicted

tonnage increases to 0.585 (note that the reported correlations include links that are not

matched in the calibration). Adding link-level tonnage improves model fit further, with the

correlation between predicted and observed tonnage reaching 0.684 (0.77 when tonnage is

logged). We also explore a specification that includes an indicator for backhaul links – when

tonnage on a link is less than tonnage moving in the opposite direction on the same link.

We use specification (3) for our main results because adding backhaul does little to improve

model fit.
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A.3.6 Fuel Consumption and Emission Factors

We derive fuel consumption and emission factors based on literature sources and the port

calls data. The port calls data allows us to obtain factors that reflect the geographical

differences in the vessel fleet.

We calculate average fuel consumption factors by bilateral port pairs (origin-destination)

from the port calls data. For each trip – vessel moving between two ports – we calculate fuel

consumption per ton-kilometer accounting for main and auxiliary engines based on:

fmain

(
s
s̄

)2
+ faux

s

tons
(7)

where fmain is fuel consumption per kilometer at design speed for main engines, faux is fuel

consumption per hour for auxiliary engines, s is speed traveled, s̄ is design speed of the vessel

and tons is weight carried by the vessel. The first term in the numerator is fuel consumption

by main engines. The quadratic relationship between fuel consumption and speed derives

from the propeller law and provides reasonable predictions of fuel consumption [14]. The

quadratic relationship is also captured in the more complicated relationships often used in

inventory studies [15].

We obtain fmain from our vessel characteristics database by dividing fuel consumption

per hour at design speed by design speed. We scale the reported fuel consumption values

to account for efficiency losses due to weather (15%) and hull fouling (9%) [15]. faux varies

by vessel type and size and is from [15]. It is not possible to obtain accurate vessel speeds

from the port calls data, so we assume there to be a constant ratio of observed to design

speed by vessel type. We obtain these ratios from [15], but adjust for the fact that fuel

consumption at the average speed will under predict average fuel consumption. We then

average the vessel specific fuel consumption factors by bilateral pair. We fill missing values

using the destination-origin pair and then the first available average at the port-to-country,

port, country-to-country, country or region level.
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Emission factors for primary PM2.5 and SO2 follow IMO greenhouse gas inventories [16,

15] and depend on the sulfur content of the fuel being used. We assume fuel sulfur is 2.7%

if no policies are in place, and that the limits imposed by IMO 2020 (0.5%) and ECAs

(0.1%) are binding when these policies are considered. For SO2, the emission factor accounts

for the fraction of fuel sulfur that is converted to SOx and the molecular weight of SO2:

ef(SO2) = sulfur/100 ∗ 0.9754 ∗ 2 where sulfur is the percent of sulfur in fuel by weight

(0 to 100 scale). The IMO inventory reports relationships between fuel sulfur and PM2.5

emissions (g/kWh) for residual and distillate fuels. These relationships – after converting to

g/g fuel – are:

efr = (1.35 + sfc ∗ 7 ∗ 0.02247 ∗ (sulfur/100− 0.0246)) ∗ 0.92/sfc

efd = (0.23 + sfc ∗ 7 ∗ 0.02247 ∗ (sulfur/100− 0.0024)) ∗ 0.92/sfc (8)

where sfc is the specific fuel consumption factors (g/kWh) and the subscripts r and d

designate residual and distillate fuel respectively. We use the residual emission factor for

sulfur levels above 1%, the residual emission factor for sulfur levels below 0.25%, and linear

combination of the two fuels that achieves the appropriate sulfur level for the intermediate

range.

NOx emissions are regulated by IMO standards, which are tiered by age [17]. We

construct ef s
ode for NOx as the average of the tiered emission standards weighted by the

tons carried by vessels of each tier between port o and d, which we obtain from the port calls

database. The IMO standards set emissions limits per kilowatthour (Table A.7), which we

convert to emissions per unit fuel by dividing by specific fuel consumption factors (g/kWh).

The specific fuel consumption factors are from [15] and assume that vessels vessels operate

at approximately 80% load and use heavy fuel oil. We do not consider Tier III standards,

which only applies in North America ECA in 2016 and in North and Baltic ECAs in 2021,

in our main analysis because our port calls data is from prior to 2016 and because there is
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some concern related to the effectiveness of these standards [18].

A.3.7 Source-Receptor Matrix

We use a global version of InMap to construct our source-receptor matrix [19, 20]. InMap uses

a variable size computational grid that gets smaller in highly populated areas. A limitation of

the current version of InMap is that pollution is not tracked across the poles or antimeridian.

The resolution of our source-receptor matrix broadly matches the computational grid used

in [20]. Grid cells in the open ocean are 5° by 4°, while cells that intersect land are 2.5° by

2°. We drop grid cells that do not intersect with an edge in the maritime network. There

are 3,058 cells in the source-receptor grid.

We use InMap to simulate the change in ambient particulate matter (in each cell of

InMap’s computational grid) associated with the a one ton emission in each cell in the source-

receptor matrix (and for each pollutant). To limit the computational burden of this exercise,

we limit the NOx source-receptor matrix to the 2,375 cells with the highest contributions to

mortality per ton PM2.5. This set of cells account for well over 99% of mortality related to

PM2.5 emissions. This restriction effectively limits coverage of the NOx grid in open oceans

that are distant from population centers and should have little meaningful impact on our

results.

For each cell in InMap’s grid, we then estimate the change in mortality due to the

change in ambient particulate matter. We sum over the InMap grid cells by country to get

country level estimates of mortality per ton of emission. Mortality is related to a change in

pollution concentration according to: mort = AF ∗ base ∗ pop where AF is the attributable

fraction, base is baseline mortality rates and pop is population. Attributable fraction related

to relative risk according to: AF = (RR− 1)/RR = 1−RR−1. We use a log-linear relative

risk function – following [21, 22, 23, 24] – to obtain:

mort = (exp(β ∗∆PM)− 1) ∗ base ∗ pop (9)
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where β is a parameter from the literature and ∆PM is the change in ambient particulate

matter simulated by InMap. Note that this specification is relevant for small changes

in concentrations. There are other functional form options for relative risk, including

the integrated exposure-response (IER) function. We use the log-linear specification for

computational simplicity, to be consistent with other studies of the health burden of shipping,

concerns that the IER function will underpredict mortality in more polluted areas [25],

and because the log-linear specification is consistent with recently developed models when

evaluating a marginal changes in concentrations [26].

Our population data is the 2020 projected population from [27]. We obtain

baseline mortality rates, averaged over 2015-2019, at the country level from [28]. The

upper and lower estimates from this source are used in our sensitivity analysis. We

generate results using a number of assumptions for β. Our main results follow

[22] who use β = 0.023111(0.013103, 0.033647) for cardiovascular mortality and β =

0.031481(0.006766, 0.055962) for lung cancer related mortality. We also generate results

with the commonly used parameter estimates from Krewski et al. (2009) [29] and LePeule et

al. (2012) [30], which imply a 6% or 14% increase in all cause mortality for a 10 microgram

per cubic meter increase in particulate (β is 0.0058 or 0.0131).
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B Validation of Top-Down Accounting

Table 1 presents baseline estimates for maritime shipping, broken down both by domestic

and international trade flows. Our top-down accounting of shipping activity, fuel use and

emissions are in general accordance with comparable global statistics and, in the case of

emissions and mortality, inventory studies of the local pollution externality from shipping.

The GTAP data reports $21 trillion in international trade and $17 trillion in international

merchandise trade. This is comparable to the total value of merchandise trade (exports) in

2017 of $17.2 trillion reported by UNCTAD [31]. The total value of international maritime

trade is $9 trillion (or 53% of total), which is roughly consistent with estimates that put

the share of maritime trade by value to be between 50%-70% [8, 32, 33]. The IATA also

reports that about 35% of international trade by value is by air, which implies a sea share

in this range [34]. However, our approach underestimates the weight and shipping services

associated with international trade reported by UNCTAD (10.7 billion tons loaded and 107.4

trillion t-km in 2017), though we estimate a very similar value for kilometers traveled per

ton of goods shipped.

Breaking weight traded down by vessel type, [31] report weight of trade by product type:

30% is oil and gas, 30% is other bulk (iron ore, coal, grain, etc) and 40% is other dry cargo.

This breakdown broadly fits with our vessel designations if we combine our container and

general cargo to represent other dry cargo, though we somewhat under represent other dry

cargo (Table A.1).

Since fuel consumption by maritime transport and, especially, emissions are not directly

observable on the global scale, the most direct comparisons of our estimates are to inventory

studies of the maritime transport sector. Our fuel consumption and emissions values are

generally in line with these studies, considering our somewhat lower estimate of weight

and transportation services. We estimate fuel consumption of 166 and 67 million tons for

international and domestic shipping respectively. [15] reports similar numbers based on
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bunker fuel sales (221.47 and 48.98 million tons) and an AIS inventory (225.34 and 30 million

tons) methodologies. Total fuel consumption estimated by [22] using AIS inventory methods

is very similar. Our breakdown of domestic versus international fuel use are not directly

comparable to these studies because our definition is based on the trade flow as opposed to

the vessel type and ports used. Perhaps more informatively, our average fuel consumption

per unit of transportation service (2.0 tons per million t-km) is quite similar to both of these

studies. Compared to [15], our estimate is nearly identical to the global average reported

for 2015, but is somewhat higher than reported global average in 2018. Given the relatively

close accordance with fuel consumption, our predicted emissions are also consistent with [15]

and [22], when IMO 2020 and ECAs are accounted for.

Despite substantial differences in modeling, our accounting provides estimates of

mortality that are consistent with other recent studies of total air pollution related mortality

of shipping. Soviev et al. [22] use a shipping inventory model and a high complexity

atmospheric model to estimate shipping mortality to be 403 (212-595) thousand when ECAs

and EU and Chinese sulfur directives are in place but IMO 2020 is not. Our estimates using

the source-receptor matrix compare favorably – 366 thousand deaths – when the ECAs are

in place (Table 4).
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C Appendix Tables and Figures

Bulker Container Gen. Cargo Tanker Total

Total Value (billion $) 6913 43742 756 5251 144692
Merchandise 6913 43742 756 5251 56663

Sea Value (billion $) 2065 14928 234 3053 20279
Weight (billion tons) 9.0 8.0 0.3 8.5 25.7
Transport Services (trillion t-km) 50.7 31.2 1.3 34.7 117.9
Fuel (million tons) 80.3 78.1 7.2 67.9 233.4

Emissions (million tons)
PM2.5 0.18 0.18 0.02 0.14 0.52
SOx 0.74 0.73 0.06 0.55 2.08
NOx 7.26 7.27 0.67 6.33 21.53

Mortality 54461 91579 5511 53598 205149
PM2.5 1655 3298 178 1814 6945
SOx 8583 15343 886 9049 33861
NOx 44223 72938 4446 42735 164343

Notes: Merchandise row excludes services.

Table A.1: Baseline Shipping Activity and Mortality
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Figure A.1: Decomposition of Exposure
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exposure-contribution ratio

Notes: gray shading represents predicted fuel consumption in each grid cell. Darker shades represent higher
percentiles.

Figure A.2: Other Country Exposure-Contribution Ratio

Consumption Imports Exports

SS Africa → SS Africa 530 717 606
SS Africa → M East and N Africa 223 167 173
SS Africa → Asia Pacific 3600 3700 2448
SS Africa → Europe 336 298 258
SS Africa → N America 37 43 29
SS Africa → S America 159 185 152

M East and N Africa → SS Africa 360 449 359
M East and N Africa → M East and N Africa 1971 2425 2132
M East and N Africa → Asia Pacific 10945 15841 8644
M East and N Africa → Europe 1715 1720 1715
M East and N Africa → N America 86 82 59
M East and N Africa → S America 277 162 222

Asia Pacific → SS Africa 762 404 798
Asia Pacific → M East and N Africa 1809 1298 1708
Asia Pacific → Asia Pacific 126498 129662 148043
Asia Pacific → Europe 1903 1448 1474
Asia Pacific → N America 429 150 359
Asia Pacific → S America 1064 348 974

Europe → SS Africa 475 402 460
Europe → M East and N Africa 2779 2935 3057
Europe → Asia Pacific 16796 11590 10127
Europe → Europe 5762 6181 6713
Europe → N America 252 125 166
Europe → S America 652 360 536

N America → SS Africa 210 102 145
N America → M East and N Africa 938 670 770
N America → Asia Pacific 13116 4988 4225
N America → Europe 1704 1474 1405
N America → N America 1576 2023 1773
N America → S America 1116 1495 1051

S America → SS Africa 75 338 45
S America → M East and N Africa 227 452 107
S America → Asia Pacific 3769 8944 1238
S America → Europe 477 776 333
S America → N America 385 341 377
S America → S America 2137 2855 2469

Notes: First column allocates contributions based on on consumption using input-
output methods. Remaining columns allocate contributions based on imports (second
column) and exports (third column).

Table A.2: Alternative Attribution Options
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IMO 2020 Med China India

Total 205149 -2441 -11832 -3234

Low → Low 21766 -173 -36 -2254
Low → Middle 20085 -114 -770 -49
Low → High 1817 -95 -38 -2

Middle → Low 13716 -266 -218 -285
Middle → Middle 72654 -232 -8026 -4
Middle → High 5597 -173 -403 -0

High → Low 18846 -518 -86 -630
High → Middle 38601 -416 -2146 -10
High → High 12067 -454 -111 -0

Notes: First column report results with IMO 2020 and
current ECAs in place. Remaining columns report changes in
mortality with ECAs established in the Mediterranean Sea,
and the Exclusive Economic Zones of China and India.

Table A.3: Mortality and Contributions
Under Alternative ECAs

Baseline Effic Global Reshore USA Reshore China

Total 205149 -15220 -3535 -3471

Low → Low 21766 -1643 -14 -85
Low → Middle 20085 -1383 -29 -113
Low → High 1817 -138 -5 -21

Middle → Low 13716 -1055 -61 -1117
Middle → Middle 72654 -4036 -115 -1097
Middle → High 5597 -416 -21 -287

High → Low 18846 -1981 -885 -315
High → Middle 38601 -3353 -2090 -357
High → High 12067 -1214 -315 -79

Notes: First column reports results with IMO 2020 and current ECAs in place.
Column (2) reports mortality with energy inputs per dollar of output reduced by
25% for all production sectors globally. Columns (3) and (4) reports results when
share foreign goods in both production and consumption is reduced by 25% and
the share of domestic goods are scaled accordingly in US and China respectively.

Table A.4: Mortality and Contributions Under
Alternative Scenarios
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GTAP Sectors

Agr pdr; wht; gro; v f; osd; c b; pfb; ocr; ctl; oap; rmk; wol;
frs; fsh

Chem chm; bph; rpp
Coal coa
Elec ely
Equip mvh; otn
Food cmt; omt; vol; mil; pcr; sgr; ofd; b t
Mach ome
Mach Ele ele; eeq
Manuf omf
Metal i s; nfm; fmp
Min nmm
Mine oxt
NGas gas; gdt
Oil oil
Other wtr; cns; trd; afs; cmn; ofi; ins; rsa; ros; osg; edu; hht;

dwe
P C p c
Paper ppp
Textile tex; wap; lea
Transport otp; wtp; atp; whs; obs
Wood lum

Table A.5: Sector Aggregation
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ALB-alb ARE-are ARG-arg ARM-arm AUS-aus AUT-aut AZE-
aze BEL-bel BGD-bgd BGR-bgr BHR-bhr BLR-blr BOL-bol
BRA-bra BWA-bwa CAN-can CHE-che CHL-chl CHN-chn CIV-
civ CMR-cmr COL-col CRI-cri CYP-cyp CZE-cze DEU-deu
DNK-dnk ECU-ecu EGY-egy ESP-esp EST-est ETH-eth FIN-
fin FRA-fra GBR-gbr GEO-geo GHA-gha GRC-grc GTM-gtm
HKG-hkg HND-hnd HRV-hrv HUN-hun IDN-idn IND-ind IRL-
irl IRN-irn ISR-isr ITA-ita JPN-jpn KAZ-kaz KEN-ken KGZ-kgz
KHM-khm KOR-kor KWT-kwt LAO-lao LKA-lka LTU-ltu LUX-
lux LVA-lva MAR-mar MDG-mdg MEX-mex MLT-mlt MNG-
mng MOZ-moz MUS-mus MWI-mwi MYS-mys NAM-nam NGA-
nga NIC-nic NLD-nld NOR-nor NPL-npl NZL-nzl OMN-omn
PAK-pak PAN-pan PER-per PHL-phl POL-pol PRT-prt PRY-pry
QAT-qat ROU-rou RUS-rus SAU-sau SEN-sen SGP-sgp SLV-slv
SVK-svk SVN-svn SWE-swe THA-tha TUN-tun TUR-tur TWN-
twn TZA-tza UGA-uga UKR-ukr URY-ury USA-usa VEN-ven
VNM-vnm XAC-xac XCA-xca XCAR-dom; hti; jam; pri; tto; xcb
XCF-caf; tcd; cog; cod; gnq; gab XEA-xea XEAF-com; rwa; sdn; xec
XEE-xee XEF-xef XER-srb; xer XNA-xna XNF-dza; xnf XOC-xoc
XSA-afg; xsa XSC-swz; xsc XSEAS-brn; xse XSM-xsm XSU-tjk;
uzb; xsu XTW-xtw XWAF-ben; bfa; gin; mli; ner; tgo; xwf XWAS-
irq; jor; lbn; pse; syr; xws ZAF-zaf ZMB-zmb ZWE-zwe

Table A.6: Country Aggregation
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Age gNOx/kWh gNOx/g Fuel

Tier 0 Before 2000 18.1 18.1/185 = 0.097838
Tier I After 2000 17 17/175 = 0.097143
Tier II After 2011 14.4 14.4/175 = 0.082286
Tier III After 2016 3.4 3.4/175 = 0.019429

Notes: gNOx/kWh is from [17]. The majority of vessels
in our analysis use slow-speed engines – RPM lower than
130 – so we use the highest possible NOx rating in each
tier.

Table A.7: NOx Emissions Factors

(1) (2) (3) (4)

cons - 13.468 -4.421 -4.119
km 1.000 0.564 0.634 0.608
tons o - -3.626 -0.266 -0.711
tons d - 1.200 2.170 2.604
tons od - - -1.810 -1.822
backhaul - - - -0.196
RMWSE * 1000 3.215 1.564 0.981 0.971
Correlation 0.402 0.585 0.684 0.683
Correlation (logs) 0.567 0.580 0.773 0.764

Notes: Column (1) reports model fit when
coefficient on distance is set to 1. Remaining
columns report estimation results with various
specifications of link-level trade costs. km - is link
distance by sea; tons o, tons d , tons od are the
weight of goods leaving the origin port, arriving
at the destination port, and traveling on the link
respectively. backhaul is an indicator for when
tonnage on a link is less than tonnage moving
in the opposite direction on the same link. All
continuous variables are logged.

Table A.8: Routing Parameter Estimates
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