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Governments frequently use policies that target the expansion of a clean technology to achieve 
greenhouse gas emissions mitigation goals, such as those submitted by countries under the 
Paris Agreement. As a result of direct and indirect market adjustments induced by a particular 
policy, marginal emissions from expanding a clean technology may vary in the amount of clean 
technology, reflecting a marginal emissions pathway. This paper analyzes the economic and 
policy drivers of marginal emissions pathways and the implications when such pathways are 
non-constant. We show numerically that marginal emissions pathways for a mandate and sub-
sidy to promote biofuels in the U.S. are non-constant in the amount of biofuel and, due to 
differential impacts on output markets, move in opposite directions and eventually have oppo-
site signs. We also show that explicitly or implicitly treating marginal emissions as constant 
can generate significant errors in the prediction of mitigation from clean technology policies 
and can make it difficult to attribute mitigation from decentralized efforts to address climate 
change, such as the Paris Agreement. 
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Policies that incentivize the expansion of perceived clean technologies at the expense of 

dirty alternatives, such as mandates, fractional targets, and subsidies are central to decentral-

ized efforts to mitigate greenhouse gas (GHG) emissions. For example, of Nationally Deter-

mined Contributions (NDCs) submitted through July 2021 as part of the Paris Agreement, 

measures to achieve domestic mitigation by expanding renewable energy were “most fre-

quently mentioned” by countries, followed by measures to improve energy efficiency (UN-

FCCC 2021). Policymakers need accurate estimates of emissions reductions expected to be 

achieved by these efforts both individually—to inform the level of mitigation sought by any 

given nation, as well as collectively—to attribute national contributions to global mitigation.  

Evaluating mitigation from clean technology policies is difficult because each unit of 

clean technology added by a policy need not result in the same change in emissions. Clean 

technologies only indirectly reduce emissions by displacing dirty alternatives. As a result, the 

change in emissions from policies that expand clean technologies depend on the policy-in-

duced response of markets linked to the production and use of the clean technology as well as 

dirty alternatives, conditional on baseline economic conditions. These policy and economic 

drivers create a relationship between the quantity of clean technology added by a particular 

policy and the resulting marginal emissions or a marginal emissions pathway. The shapes of 

marginal emissions pathways have important policy implications because the total change in 

emissions from a clean technology policy is the integral under the marginal emissions path-

way, but many standard methods explicitly or implicitly assume that marginal emissions 

pathways are constant in the amount of clean technology and/or the policy driving the clean 
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technology expansion. 

In this paper we explore the drivers of marginal emissions pathways and assess how the 

shapes of marginal emissions pathways affect the prediction and attribution of mitigation 

from clean technology policies. To illustrate the drivers of marginal emissions pathways, we 

first use a simple conceptual model to show that marginal emissions from a mandate and a 

subsidy—the most common clean technology policies (International Energy Agency 2017)—

can be decomposed into input and output effects (this decomposition follows the previous lit-

erature, such as Lapan and Moschini (2012)). The input effect captures changes in emissions 

from adjustments in input markets linked to the production of the clean and dirty technologies 

assuming one-for-one displacement and is therefore the same for any policy. The output ef-

fect is the change in emissions that arises given how policies alter output markets and thus 

depends on the rate at which the clean technology displaces the dirty technology. Since input 

and output effects depend on economic conditions in affected markets, such as the market 

shares of the inputs used in the production of the clean or dirty technologies, and the output 

effect depends on how a particular policy distorts markets, marginal emissions may vary with 

respect to the amount of clean technology and/or the policy driving the clean technology ex-

pansion. 

We then couple a rich sectoral economic model with a detailed emissions model to eval-

uate the marginal emissions pathways arising from a mandate and subsidy to promote corn 

ethanol in the United States. Marginal emissions pathways from each policy are not only non-

constant but have different shapes due to divergent output effects. More precisely, marginal 
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emissions are increasing for the subsidy at a nearly constant rate whereas marginal emissions 

are decreasing at an increasing rate for the mandate. At low ethanol quantities marginal emis-

sions for both policies are between 1-3 gCO2e/MJ, meaning these policies slightly raise emis-

sions. Marginal emissions for the subsidy steadily rise as the quantity of ethanol increases, 

reaching 20 gCO2e/MJ, whereas marginal emissions become negative under the mandate for 

quantities above 15 billion gallons. The same drivers that cause marginal emissions pathways 

to be non-constant, also explain the sensitivity of marginal emissions pathways to alternative 

parameter assumptions. 

Finally, we explore the implications of non-constant marginal emissions pathways for 

predicting and attributing mitigation. Efforts to predict emissions reductions that explicitly or 

implicitly ignore the channels by which marginal emissions vary (e.g., amount of clean tech-

nology in the baseline and/or added, policy driving the expansion) can give rise to significant 

prediction errors. Similarly, with respect to decentralized efforts to address climate change 

such as the Paris Agreement, simple estimates of collective mitigation, such as the sum of 

mitigation from all countries’ NDCs, are unlikely to provide accurate predictions of expected 

collective mitigation which, in turn, may make it difficult to attribute the precise contribution 

of each nation’s mitigation effort. Our numerical analysis shows that failing to account for 

non-constant marginal emissions can give rise to predicted changes in emissions that are of 

the wrong sign and/or that diverge by an order of magnitude from true estimates. It is espe-

cially notable that these errors differ drastically across policies, due to differences in the 

shapes of the marginal emissions pathways. Ultimately this raises concerns about a number of 
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methods used to predict changes in emissions such as: the use of (constant) lifecycle analysis 

or econometric point estimates of marginal emissions to infer large-scale changes in emis-

sions, and the wide range of quantification strategies used by nations in their NDCs. Fewer 

than 10% of NDCs mention the use of models to estimate emissions reductions, fewer still 

consider the explicit role of policies, and not a single NDC reports how other countries’ miti-

gation efforts affect their own predicted mitigation (UNFCCC 2021).  

Although several studies have analyzed the emissions implications of various clean 

technologies, this paper is the first to investigate the drivers of marginal emissions pathways 

and the implications of non-constant marginal emissions pathways for predicting and attrib-

uting mitigation. Previous work has relied on three broad approaches to assess marginal emis-

sions. The first approach uses economic models to evaluate the impact of clean technology 

policies on emissions, or an outcome that may drive emissions for a particular clean technol-

ogy. Simple analytical models have been developed to identify key parameters that alter the 

marginal impacts of clean technology policies at a particular quantity of clean technology 

(Fischer and Newell 2008; Holland, Hughes, and Knittel 2009). More detailed numerical 

models have been used to assess emissions impacts from non-marginal policy changes 

(Palmer and Burtraw 2005; Oladosu and Kline 2013; Fell and Linn 2013; Rajagopal and 

Plevin 2013; Chen et al. 2014; Allaire and Brown 2015; Bento, Klotz, and Landry 2015; 

Padella, Finco, and Tyner 2012; Goulder, Hafstead, and Williams III 2016; Thompson et al. 

2018). We also rely on an economic model, but unlike these studies our focus is on character-

izing the marginal emissions pathways of specific policies and investigating the implications 
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of non-constant marginal emissions. 

The second approach uses econometric methods to assess how emissions change in re-

sponse to expansions in renewable electricity generation or changes in electricity demand 

(e.g., due to energy efficiency programs or electric cars) exhibit heterogeneity across space 

and time (see, for example, Graff Zivin, Kotchen, and Mansur (2014), Novan (2015), Holland 

et al. (2016), Callaway et al. (2017), and Holland et al. (2022)). These findings are in large 

part attributable to heterogeneity in the composition of marginal generation and demand pro-

files, which reflect the near-term economic conditions of a particular electricity market. How-

ever, by estimating the average marginal emissions impacts of changes in supply or demand 

conditional on observed economic conditions, these studies isolate only the input effect at a 

particular level of clean technology. Unlike our analysis, the emissions estimates from these 

studies do not account for the output effect and, with the exception of Novan (2015), do not 

show how the input effect changes with the amount of clean technology added.  

The third approach uses lifecycle analysis (LCA) methods to evaluate the emissions im-

pact of a clean technology, and possibly an assumed displacement of a dirty technology, 

through a bottom-up accounting of emissions across all phases of the technology’s production 

and use (Farrell et al. 2006; Styles and Jones 2008; Lemoine et al. 2010; Hertwich et al. 

2015). Our analysis of marginal emissions is comparable to consequential LCA, given its fo-

cus on market adjustments resulting from the addition of a unit of technology (Earles and Ha-

log 2011; Rajagopal 2014; McManus and Taylor 2015; Rajagopal 2017). An important dif-

ference with most LCA studies is that we take a policy-based as opposed to a technology-



7 
 

based approach (Bento and Klotz 2014). Since technology-based LCAs only capture the input 

effect they cannot disentangle how marginal emissions vary across policies or with quantity. 

Unlike Bento and Klotz (2014), in this paper we show that marginal emissions vary with the 

amount of clean technology deployed and that traditional LCA approaches, which implicitly 

assume constant marginal emissions, lead to errors when predicting and attributing mitiga-

tion.  

Taken together our findings illustrate the potential for sizeable harm from implicitly or 

explicitly ignoring non-constancy in marginal emissions pathways when predicting or attrib-

uting mitigation from non-marginal changes in a clean technology. This is similar in spirit to 

the problems of ignoring the general equilibrium effects of policies (e.g., Goulder and Wil-

liams (2003) and Fullerton and Heutel (2007)) or the use of marginal willingness to pay 

measures to value non-marginal changes in environmental goods (e.g., Toman (1998)). 

Conceptual Model  

Figure 1 introduces a general conceptual model that decomposes the change in emis-

sions from a marginal expansion in a clean technology due to a clean technology policy. This 

model maps to a fully specified and general analytic model of the global economy (Section 2 

of the Supplementary Information) consisting of multiple economic sectors and where emis-

sions are tracked based on sectoral inputs and outputs. This framework is applicable to a di-

verse array of technology (e.g., electricity markets) and policy (e.g., Renewable Portfolio 

Standards) settings. Although this framework could also be applied to policies that target re-

ductions in dirty technologies, we focus on policies that promote clean technologies due to 
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their widespread adoption globally. 

 

Figure 1. Economic and Emissions Impacts of Clean Technology Policies 

Economic sectors are depicted by dark gray rectangles. The flow of energy and materi-

als between sectors are indicated by black arrows. The production of clean and dirty technol-

ogies are the rectangles C and D. Each technology is itself directly produced from a variety of 

inputs (rectangles C1, …, CM and D1, …, DN linked by solid black arrows) and may indirectly 

affect markets for products that are not directly used as inputs (rectangles CI and DI linked by 

dashed black arrows), such as the conversion of land to agricultural production in response to 

biofuel expansion (Searchinger et al. 2008). Collectively, we refer to these as input markets. 

Clean and dirty technologies are combined to produce a composite consumption good (e.g., 

electricity or blended fuel). We focus on clean technology policies (oval) that directly encour-
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age greater use of a clean technology, and therefore refer to this as the regulated market (rec-

tangle R). The composite good is used in an output market (rectangle F), either as a final con-

sumption good (e.g., in the case of electricity) or as an input to other production processes 

(e.g., the production of vehicle miles travelled in the case of blended fuel). Emissions are po-

tentially generated linearly in each sector through production processes and/or the use of in-

puts.  

Insights from the Conceptual Model 

The conceptual model reveals the economic and policy drivers that may cause marginal 

emissions to vary with the amount of clean technology and/or policy driving the expansion in 

clean technology. In response to a clean technology policy, the quantity of clean technology 

in the economy increases but the quantity of dirty technology may decrease, stay the same, or 

increase. These changes cause economic sectors and the total level of emissions to adjust. 

The marginal change in emissions, across all sectors, due to a unit increase in the clean tech-

nology can be decomposed into input and output effects.  

The input effect, depicted with the hatched arrows and boxes, is the change in emissions 

that arises due to equilibrium adjustments in input markets affected by the production of the 

clean and dirty technologies from a policy induced expansion of the clean technology. In or-

der to isolate the emissions associated with the two technologies, we measure this effect as-

suming a one-for-one displacement of the clean technology for the dirty technology. As such, 

the input effect is the difference between the marginal emissions of the clean and dirty tech-

nologies. The marginal emissions of each technology reflect all changes in emissions arising 
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from adjustments in input markets linked to the production of the technology as well as mar-

kets that compete with those inputs.1  

By construction, the input effect is the same for any policy but need not be constant in 

the amount of clean technology. This is because marginal emissions of the clean and dirty 

technologies are determined by conditions in input markets, such as the prices of inputs or the 

share of inputs used in the production of either technology, and/or the emissions rates of in-

puts, any of which may change as more units of clean technology are added to the economy. 

The output effect, depicted with white arrows and boxes, captures the change in emis-

sions attributable to equilibrium adjustments in regulated and output markets. A clean tech-

nology policy may alter the prices of clean and dirty technologies and, in turn, the price of the 

composite good and prices in output markets that use the composite good. Conditional on the 

marginal increase in clean technology, these price changes will induce quantity changes in 

output and regulated markets, as well as the market for the dirty technology and associated 

input markets. The output effect captures any emissions associated with these quantity 

changes and can reinforce or erode the input effect.  

If the production and use of clean and dirty technologies are the main sources of emis-

sions, then the output effect is inversely related to the rate at which the clean technology dis-

places the dirty technology in equilibrium, or the displacement ratio. If the price of the com-

posite good does not change in response to the policy, the displacement ratio will be one and 

                                                 

1 The marginal emissions of a technology can be viewed as a consequential LCA measure, making the 
input effect the emissions savings identified by a technology-based consequential LCA (Earles and Halog 2011). 
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the output effect will be zero. A displacement ratio above (below) one implies more (less) 

emissions reductions from additional changes in the dirty technology than the one-for-one 

displacement assumed by the input effect and therefore a positive (negative) output effect.  

We obtain two important insights regarding a clean technology mandate and subsidy 

from the conceptual model. First, consistent with other studies (Lapan and Moschini 2012) 

the output effect differs across the two policies. While the sign of the output effect is ambigu-

ous for the mandate, it is always positive for the subsidy. By increasing demand for the clean 

technology the mandate causes the marginal cost of the clean technology to increase. If the 

mandate displaces the dirty technology, then the marginal cost of the dirty technology will 

fall. When input markets are perfectly competitive these changes in marginal costs are fully 

passed through into the input prices facing the composite (regulated) good producer. Depend-

ing on the relative changes in clean and dirty input prices and other economic conditions 

(e.g., the shares of clean and dirty technologies), the price of the regulated good may increase 

or decrease. Equivalently, the displacement ratio may be above or below one and the output 

effect may be positive or negative. In contrast, a subsidy drives a wedge between the mar-

ginal cost of production and the price of the clean technology paid by the composite good 

producer, or clean input price. The subsidy therefore raises the marginal costs of the clean 

technology while lowering its input price. Since the clean technology can be used relatively 

more cheaply in the production of the composite good, demand for the dirty technology will 

fall causing a decline in the marginal cost (and input price) of the dirty technology. The fall in 

both input prices are passed through into the price of the composite good which also falls, 
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causing demand for the composite good to rise and a positive output effect.  

Second, the mandate implies a relationship between the input effect and the output ef-

fect that is absent for the subsidy. Economic conditions in the clean and dirty input markets 

determine the input effect, as well as the extent to which the marginal costs and input prices 

of the two technologies change. In turn, these input price changes determine the change in the 

producer price of the composite good. Marginal costs of producing the clean technology are 

increasing in the amount of clean technology added in many contexts (e.g., as inputs become 

scarcer or given a decreasing returns to scale technology). Increasing marginal costs imply 

that each additional unit of the clean technology added by a mandate has a gradually larger 

positive impact on the change in the price of the composite good, which lowers the output ef-

fect. However, for the subsidy, conditions in clean technology input markets have no bearing 

on the output effect because the additional subsidy required to increase the clean technology 

by one unit offsets the rise in the marginal costs of the clean technology.  

How input and output effects vary with the amount of clean technology added by a par-

ticular policy determine the marginal emissions pathway for each policy, which is just the 

sum of these two effects. 

Numerical Model 

Our numerical analysis uses a multi-market equilibrium model developed to evaluate 

U.S. policies to support corn ethanol that has been coupled to a detailed emissions model 

(Bento, Klotz, and Landry 2015; Bento and Klotz 2014; Landry and Bento 2020). The model, 
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whose predictions have been validated in prior work (Bento, Klotz, and Landry 2015), ac-

counts for direct and indirect adjustments in domestic and international input markets related 

to the production of ethanol (the clean technology) and gasoline (the dirty technology), which 

are combined to produce blended fuel (the composite good).2 Corn used as an input to etha-

nol production competes with other crops and non-cropland land uses both domestically and 

internationally. Crude oil is used to produce gasoline for the domestic market, while interna-

tional demand for crude oil responds to price changes. Therefore, the marginal costs of etha-

nol and gasoline production depend on conditions in the respective input markets (e.g., the 

share of corn used for ethanol production) and will change as ethanol quantities expand. The 

model calculates lifecycle greenhouse gases, in terms of carbon dioxide equivalent (CO2e) 

based on 100-year global warming potentials, resulting from agricultural production, land use 

change, ethanol production, crude oil recovery, gasoline refining, and the combustion of gas-

oline and crude products. A full description of the sectors represented and functional forms 

are provided in Section 2 and 3 of the Supporting Information whereas Section 4 details the 

data sources, parameters, and emissions factors used by the model.3 

We use this model to examine how marginal emissions from ethanol change with the 

                                                 

2 Blended fuel together with other inputs is subsequently used to produce vehicle miles travelled, which 
together with a food composite and a numeraire are the final consumption goods. The model also accounts for 
interactions with several pre-existing policies. 

3 There are three potential limitations of our numerical framework. First, although our model explicitly 
captures trade in crops and crude oil, we do not allow for trade in biofuels, which could alter the input effect de-
pending on the emissions associated with foreign biofuels. Second, it abstracts from other possible market dis-
tortions such as market power and/or price regulation, so changes in marginal costs of the clean and dirty tech-
nologies are passed into the price of the regulated good. Third, our analysis does not consider the dynamic ef-
fects of policies through induced innovation that may lower technology costs in the future.  



14 
 

quantity of ethanol supported by a mandate and subsidy. Our analysis starts from a baseline 

that represents the year 2015 with no ethanol policies in place. The total quantity of ethanol 

in this baseline is 6 billion gallons which reflects the amount of ethanol produced under per-

fect competition in the absence of ethanol policies but given all other pre-existing policies. 

As a result, this is lower than observed U.S. ethanol quantities in 2015 due to the absence of a 

mandate on conventional biofuels of 15 billion gallons implied by the U.S. Renewable Fuel 

Standard (RFS).  

To construct marginal emissions pathways, we simulate incremental increases in a man-

date and subsidy for ethanol in the production of blended fuel. We increase each policy to ex-

pand ethanol quantities from 6 billion gallons to 20 billion gallons over 100 increments. For 

the mandate this is relatively straightforward, but changes in the subsidy entail identifying 

subsidy levels necessary to simulate incremental changes in ethanol quantities. For example, 

to achieve an expansion of 2 billion gallons, the subsidy is $0.13 per gallon. To achieve a 4 

billion gallon expansion the subsidy is $0.34 per gallon. To approximate marginal emissions, 

we compute the average change in emissions per unit of ethanol added over each increment. 

The resulting series of marginal emissions and ethanol quantity pairs characterize the mar-

ginal emissions pathway for each policy.  

We consider a large total expansion in ethanol production in order to highlight the dif-

ferences in emissions changes that could potentially emerge. The range of ethanol quantities 

we consider is meant to illustrate the economic mechanisms identified in our conceptual 

framework. Technical limitations (e.g., the blend wall) may need to be overcome to achieve 
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ethanol quantities at the higher end of the range we consider. With respect to the mandate, 

corn ethanol quantities through 15 billion gallons align with the historical implementation of 

the RFS. Quantities beyond this are largely illustrative but within the scope of discussions re-

garding future implementation of the RFS, i.e., if the conventional biofuel standard continues 

to be enforced and the Advanced and Cellulosic biofuel standards continue to receive signifi-

cant waivers by the U.S. Environmental Protection Agency.  

Results 

Next, we use insights from the conceptual model and results from our numerical model 

to characterize marginal emissions pathways for an ethanol mandate and subsidy in the U.S.  

Input Effect 

The input effect is the difference between the marginal emissions from ethanol and gas-

oline and is the same across policies. Panel A of Figure 2 displays the marginal emissions 

from ethanol and gasoline as ethanol quantities increase from 8 to 20 billion gallons. At 8 bil-

lion gallons, marginal emissions from ethanol (circle markers) are 72 gCO2e/MJ. This total 

includes emissions from ethanol production, expanded corn production, displaced production 

of other crops, and direct and indirect land use change. Marginal emissions from gasoline 

(star markers) total 78 gCO2e/MJ and include emissions from the extraction and refining of 

crude oil and the combustion of gasoline, less indirect emissions reductions from displaced 

crude oil products used outside the U.S. This estimate of the marginal emissions from gaso-

line are similar in magnitude to other studies that account for fuel market effects (Rajagopal 

2013; Rajagopal and Plevin 2013).  
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Figure 2. Decomposition of Marginal Emissions Pathways 

The input effect for both policies is the hashmarked line in Panel B of Figure 2. It is 

negative, but small at low ethanol quantities and increases as input markets tighten in re-

sponse to expansions in ethanol. At 8 billion gallons the input effect represents only an 8 

gCO2e/MJ reduction in emissions. The input effect increases at a nearly constant rate with the 
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amount of ethanol added and is positive after 13.5 billion gallons because the marginal emis-

sions of ethanol are larger than the marginal emissions of gasoline for large quantities of eth-

anol.  

The increasing input effect arises from the increase in the marginal emissions of ethanol 

in Panel A and corresponds to increases in the marginal costs of ethanol production. As more 

ethanol is added to the economy, land markets become progressively tighter, requiring ever 

larger increases in the prices of corn and other crops (Figure 1 in Supporting Information) 

and raising the marginal costs of producing ethanol. This in turn induces more emissions 

from land market adjustments. In contrast, marginal emissions from gasoline are nearly con-

stant because the bulk of these emissions are due to final combustion, which is constant per 

unit of gasoline, and there is only a slight slackening of the crude oil market since the quan-

tity of gasoline displaced is small in relation to global demand for crude oil.  

Output Effect 

In sharp contrast to the input effect, the output effect differs dramatically across poli-

cies. The output effect for the mandate (square markers) and subsidy (triangle markers) are 

plotted alongside the input effect in Panel B of Figure 2. The output effect for the subsidy is 

always greater than for the mandate. At 8 billion gallons, the output effects for both policies 

are positive, but slightly smaller for the mandate (8 gCO2e/MJ) than for the subsidy (10 

gCO2e/MJ). Initially, both policies cause the price of blended fuel to fall and therefore less 

than one unit of gasoline is displaced for each unit of ethanol added. However, unlike the 

subsidy, the mandate ensures that the increase in the marginal costs of producing ethanol are 
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passed through into the price of blended fuel resulting in a smaller decline in the price of 

blended fuel, followed by an eventual increase. 

As ethanol quantities expand, the output effect for the mandate decreases at an increas-

ing rate and eventually becomes negative. Since marginal emissions of gasoline are nearly 

constant with respect to ethanol added, the falling output effect reflects a rising displacement 

ratio (Figure 2 in the Supporting Information). This occurs for two reasons. First, the mar-

ginal costs of ethanol rise as land markets tighten and therefore each additional unit of etha-

nol induces a larger increase in the price of ethanol relative to the fall in the price of gasoline, 

which is nearly constant. Second, as the share of ethanol in blended fuel increases, the in-

crease in the price of ethanol contributes more to the change in the price of blended fuel. 

Consequently, consistent with the sign of the displacement ratio, the output effect falls by 9 

gCO2e/MJ between 8 and 14 billion gallons, becomes negative at 14 billion gallons, and then 

falls further to 20 gCO2e/MJ at 20 billion gallons. That the magnitude of the changes in the 

output effect are similar, if not bigger, than the input effect indicates its first-order importance 

in determining marginal emissions and illustrates the shortcomings of technology-based LCA 

metrics. 

In contrast, the output effect for the subsidy changes very little with the quantity of etha-

nol added because the displacement ratio is nearly constant. The marginal subsidy required to 

induce a unit change in ethanol increases as the marginal costs of ethanol production rise, 

causing the price of blended fuel to be roughly constant. Moreover, across the range of etha-

nol quantities we simulate, the increasing share of ethanol in blended fuel only has a small 
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negative impact on the displacement ratio.  

Marginal Emissions Pathways 

Panel C of Figure 2 displays the marginal emissions pathways for the mandate and sub-

sidy, which are the sum of input and output effects from Panel B. At 8 billion gallons, posi-

tive output effects just offset negative input effects for both policies, leading to positive, but 

small, marginal emissions. Marginal emissions for the mandate are only 1 gCO2e/MJ, but 

marginal emissions for the subsidy are slightly higher (3 gCO2e/MJ) due to the larger output 

effect. These slight increases in emissions are consistent with results of similar modeling ex-

ercises that account for both domestic and international land and fuel market adjustments 

(EPA 2010; Rajagopal 2013; Hill, Tajibaeva, and Polasky 2016).   

Due to divergent output effects, the marginal emissions pathways for the two policies 

move in opposite directions as ethanol quantities expand. Marginal emissions due to the man-

date are nearly constant initially and then fall when the output effect dominates the input ef-

fect. In contrast, marginal emissions for the subsidy increase at a constant rate, reflecting in-

creases in the input effect. The difference in marginal emissions between the two policies 

grows considerably, reaching 10 gCO2e/MJ at 14 billion gallons and 30 gCO2e/MJ at 20 bil-

lion gallons. After 15.5 billion gallons, marginal emissions for the two policies have different 

signs. At 20 billion gallons, a unit of ethanol added by the mandate reduces emissions by 

more than 10 gCO2e/MJ, but a unit of ethanol added by the subsidy increases emissions by 20 

gCO2e/MJ.  

The mandate establishes a negative linkage between input and output effects. Tightening 
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input markets due to the expansion of ethanol drive the input effect up but push the output ef-

fect down. This linkage is absent for the subsidy since the subsidy neutralizes the impact of 

rising marginal costs of ethanol production on the output effect. 

Despite a positive and increasing input effect, emissions reductions are possible at 

higher ethanol quantities if the output effect is sufficiently negative, as is the case eventually 

for the mandate. Since the emissions advantages of ethanol over gasoline, as reflected by the 

input effect, are small, the output effect essentially determines the sign on marginal emis-

sions. 

These findings reinforce previous research that shows that accounting for policies is es-

sential for evaluating the emissions impacts of clean technologies (Bento and Klotz 2014). In 

addition, we show here for the first time that marginal emissions may be non-constant with 

respect to the amount of clean of technology in the baseline or added by a policy and that this 

itself depends on policies. 

 

Figure 3. Global Sensitivity Analysis of Marginal Emissions Pathways 
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Sensitivity Analysis 

As discussed in Section 6 of the Supplementary Information, we also explore the sensi-

tivity of marginal emissions pathways to four key sets of parameters (elasticities of excess 

supply for crude oil, elasticities of crop demand for food production, elasticities of demand 

for blended fuel, and emissions factors for agricultural production and land use change). Mar-

ginal emissions pathways under all possible parameter combinations are displayed for both 

policies in Figure 3. Previous studies have also found considerable sensitivity in estimates of 

emissions from biofuels and biofuel policies (Plevin et al. 2010 and 2015), but our focus is on 

how the sensitivity in marginal emissions differs with ethanol quantities and/or policies. We 

briefly highlight three main findings. First, marginal emissions are non-constant across a 

wide range of parameter assumptions for both policies. Second, total variation in marginal 

emissions pathways (the difference between the highest and lowest marginal emissions at a 

given quantity) depends on the economic and policy drivers emphasized in our analysis 

above. Third, as discussed further in the in the Supplementary Information, the strong non-

linearities in marginal emissions pathways under some parameter combinations for the man-

date are the result of interaction effects arising from linkages between land and fuel markets, 

which do not emerge for the subsidy. Taken together, these results suggest that the same driv-

ers that lead to non-constant marginal emissions pathways also explain sensitivity in marginal 

emissions which policymakers will need in order to credibly quantify uncertainty arising 

from their own and others’ mitigation efforts.  
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Implications 

So far our analysis has examined the drivers of marginal emissions pathways and has 

shown that marginal emissions may vary with the amount of clean technology and/or policy 

inducing the clean technology expansion. We next consider the implications of these findings 

for 1) predicting total mitigation from clean technology policies and 2) the attribution of miti-

gation to individual mitigation pledges. We illustrate these issues using our corn ethanol re-

sults, but more generally the signs of errors can be characterized based on the shape of the 

marginal emissions pathway. 

The first implication of non-constant marginal emissions is that mitigation estimates that 

explicitly or implicitly (i.e., by not considering baseline quantities or the size of technology 

expansion) treat marginal emissions as if they are constant are unlikely to be correct. The to-

tal change in emissions from an expansion in clean technology can be obtained by integrating 

under the marginal emissions pathway for a particular policy starting from a baseline and 

given the amount of clean technology expanded. Methods that assume constant marginal 

emissions effectively approximate the total change in emissions as a rectangle, whereas meth-

ods that do not consider the correct baseline and/or amount of clean technology expansion 

calculate the wrong integral. As noted above, methods that make these types of assumptions 

are pervasive in the literature analyzing clean technology policies as well as in many of the 

NDCs that countries have submitted under the Paris Agreement. 

In order to quantify the magnitude of prediction errors using our corn ethanol results, 

Table 2 reports differences between total emissions for a 3 BG expansion in ethanol from a 
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14 BG baseline and total emissions calculated using methods that fail to account for non-con-

stant marginal emissions. Columns (3) through (5) report the errors from using constant mar-

ginal emissions, while columns (6) and (7) report errors when using the incorrect baseline 

quantity of ethanol. In almost all cases, there are notable errors in predicted total emissions 

and the percentage errors are especially large because corn ethanol policies tend to have small 

impacts on emissions. 

More generally the shape of marginal emissions pathways (i.e., as captured by the first, 

second, etc. derivatives of the marginal emissions pathway over the interval characterized by 

the baseline and amount of clean technology added) directly inform the sign of prediction er-

rors. For example, since the MEP is falling in the amount of clean technology under the man-

date, fixing marginal emissions at the first unit or using a baseline that is too low yields an 

underestimate of total emissions. Conversely, since marginal emissions are increasing in the 

amount of clean technology, the subsidy generates errors of the opposite sign. Non-linearity 

of marginal emissions, such as non-zero rates at which marginal emissions rise or fall with 

the amount of clean technology, can also affect errors. For instance, since the MEP for the 

mandate is falling at an increasing rate in the amount of clean technology, the use of an aver-

age constant emissions factor (on the correct interval) generates a non-zero error. Conversely, 

since the MEP is approximately linear for the subsidy, no error is generated for this case. 
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Table 2. Prediction and Attribution Errors when Marginal Emissions are Non-Constant 

 

A second implication of non-constant marginal emissions is that it makes it difficult to 

attribute changes in emissions to individual mitigation pledges. If marginal emissions are 

non-constant, the sum of countries’ predicted mitigation pledges need not equal predicted to-

tal emissions reductions that account for all countries’ policy actions. As predicted total emis-

sions reductions are the best guess of the emissions reductions likely to be measured ex post, 

this gap in predicted mitigation indicates that it is likely to be difficult to attribute measured 

collective emissions reductions to an individual country’s mitigation pledge. Similar to the 

discussion above, this ‘attribution error’ depends on the shape of marginal emissions path-

ways. To understand this, suppose two countries facing the same marginal emissions path-

ways individually pledge to reduce emissions by using a mandate to expand ethanol by 1.5 

BG from a 14 BG baseline. If neither country anticipates the others’ ethanol expansion, the 

sum of their individual predicted mitigation efforts is 0.1 TgCO2e (column (8) of Table 2), 

which exceeds the predicted total change in emissions of -0.1 TgCO2e (column (1)). If each 

country were to account for the others’ mitigation pledge (column (9)), the sum of individual 

1 2 3 4 5 6 7 8 9

First Last Average

Too 
Low (9 

BG)

Too 
High (17 

BG)

Status 
Quo 

Baseline

Others' 
Policies 
Baseline

A. Mandate
Change in CO2e (Tg) -0.1 3.2 0.2 -0.6 -0.2 0.4 -1.6 0.1 -0.3
Error 3.3 0.3 -0.5 -0.1 0.5 -1.5 0.2 -0.2
Error (%) -3300 -300 500 100 -500 1500 -192 192

B. Subsidy
Change in CO2e (Tg) 3.2 -0.1 2.7 3.7 3.2 1.6 4.2 2.9 3.5
Error -3.3 -0.5 0.5 0 -1.6 1 -0.3 0.3
Error (%) -103 -16 16 0 -50 31 -10 10

Constant Emissions Factors Attribution (J =2)Incorrect Baseline

Actual
Wrong 
Policy
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predicted mitigation efforts is less than predicted total emissions reductions. The different 

signs of these attribution errors again coincide with the fact that the marginal emissions path-

way for the mandate is falling. For similar reasons, the subsidy yields attribution errors with 

opposite signs. These represent a ‘best case’ and if other prediction errors are also made, 

these attribution errors may be further compounded once emissions are subsequently meas-

ured ex post.  

Conclusion 

This paper examines the drivers of marginal emissions pathways and the implications of 

potentially non-constant marginal emissions pathways for the prediction and attribution of 

mitigation. Marginal emissions pathways can be decomposed into an input effect, which 

equals the difference in marginal emissions between the clean and dirty technologies from 

economic adjustments in input markets and is the same for any policy, and an output effect, 

which captures the change in emissions arising from economic adjustments in regulated and 

output markets that differ across policies. In the case of a subsidy and mandate to support 

corn ethanol in the U.S., we find that marginal emissions, and sensitivity of marginal emis-

sions, can vary between policies and the baseline amount of ethanol in the economy. 

Our analysis has shown that ignoring non-constancy in marginal emissions can create 

challenges for predicting total mitigation from clean technology policies and for attributing 

individual contributions to collective mitigation. We show that the signs of these prediction 

and attribution errors depend on the shape of the marginal emissions pathway and find that 
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the magnitudes of these errors are potentially sizeable in the corn ethanol context. With re-

spect to the Paris Agreement, these findings suggest that greater quantification and dissemi-

nation of marginal emissions pathways and their sensitivity through the NDC proposal and 

finalization process is likely to enhance the capacity for nations to make more credible and 

certain mitigation pledges. 

While our numerical exercise focuses on policies to expand corn ethanol, non-constant 

marginal emissions pathways are likely to emerge in many other clean energy contexts, such 

as policies targeting the expansion of electricity generation from renewable sources or im-

provements in energy efficiency. Recent work tends to identify the emissions input effect in 

this sector (e.g., Callaway et al. (2017)), focusing especially on spatial and temporal hetero-

geneity in the types of fossil fuel generation that renewables and energy efficiency invest-

ments displace. The emissions output effect is less well understood, though it will depend on 

similar drivers that underlie our corn ethanol results as well as features specific to the sector 

under examination (e.g., in the case of electricity markets, demand variability, regulatory 

structure, market power, and transmission congestion).  

Although our focus has been on assessing mitigation to address climate change, the 

challenges we emphasize are fundamental to understanding a plethora of policy outcomes in 

any highly non-linear economic system. In our context, non-constant marginal emissions 

emerge even though marginal emissions are (assumed to be) linear at each stage of a technol-

ogy’s lifecycle. These challenges may be amplified further by non-linearities in emissions 
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dispersal (as in the context of local air or water pollution) or in the valuation of damages as-

sociated with GHGs or other pollutants.  
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