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Abstract

This paper compares the performance of policy instruments for reducing greenhouse gas emissions (GHG)

in sectors that are exempt from climate change regulation. I focus on two constraints that can justify

exemption: unobservable emissions and/or distributional concerns regarding impacts on firms’ profit. My

analysis is conducted in the context of nitrous oxide (N2O) emissions from US agriculture, a substantial

source of GHGs that has never been regulated, using an integrated general equilibrium and biophysical

framework. Leveraging the biophysical model allows the framework to represent key drivers of policy

costs, heterogeneity in productivity and emissions rates, at a fine spatial resolution. I uncover a tension in

the policy instrument choice problem; policy options recommended for reducing the costs of addressing an

unobservable source of emissions can have more prominent impacts on profit. In fact, if the agricultural

sector is compensated for changes in profit using a costly lump sum transfer, input-based policies can be

the least cost policy options even if an emissions tax is available. Results also inform the debate regarding

agriculture’s role in climate policy. Input-based policies can reduce N2O with primary costs approaching

a first-best policy. For a 5% reduction in N2O, the primary costs of uniform and non-uniform input taxes

range from 11% to 56% more expensive than an emissions tax. However, the relative inefficiency of the

input taxes can be much larger, as much as 140% more costly than the emissions tax, if gross costs are

considered.
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1 Introduction

The marginal costs of abatement of all emitting sources must be equalized in order to efficiently regulate a

global pollutant. Yet, proposed and enacted climate change legislation, such as carbon tax or cap and trade

programs, violates this principle by leaving sectors that are significant sources of greenhouse gas (GHG)

emissions unregulated.1 Provided the broader climate program can be adjusted, reducing emissions in an

exempt sector is a potential approach to lowering the overall costs of climate action. The policy instrument

choice problem in this context is inherently second best (Lipsey and Lancaster, 1956) because it faces the

same constraints that justified the sector being exempt from climate regulation in the first place.

Unobservable emissions and distributional concerns are two prominent constraints that may preclude

a sector from being covered by climate change legislation.2 If a sector’s emissions are unobservable, or

prohibitively costly to monitor, then direct emission regulations, such as a carbon tax or quota, are not

feasible. Policymakers must instead choose from alternative, and likely inefficient, instruments that regulate

observable quantities.3 If a sector’s stakeholders wield substantial political influence, regulators may be

hesitant to enact a policy that is perceived to harm the sector (e.g. reduce profit). Distributional concerns

can motivate the choice of a policy that may not be supported on efficiency grounds (Buchanan and Tullock,

1975).

The primary goal of this paper is to explore the performance of policy instruments for reducing

emissions in sectors exempt from climate change regulation due to unobservable emissions and distributional

concerns. I analyze the costs of policy options for reducing emissions from an unobservable source when, due

to distributional concerns, the regulator seeks to limit adverse impacts to the regulated sector. To formalize

the regulator’s distributional concerns, I impose the requirement that the regulated sector is compensated for

any change in profit caused by the environmental policy, which will affect gross costs by inducing changes to

the distortionary tax system.4 This allows the estimates of gross costs to capture the distributional concern

and for instruments to be directly compared.

In this setting, it is unclear which policy instrument will achieve emissions reductions at least cost. The

1For example, the GHG cap and trade program proposed in the American Clean Energy and Security Act of 2009, the
“Waxman-Markey” climate bill, covered primarily large stationary source that could be attributed 25,000 tCO2e per year.
Between 2012 and 2015, covered entities would have accounted for only 72-78% of US emissions (CBO, 2009).

2Pooley (2010, pp. 390-394) emphasizes the political influence of agriculture stakeholders in the debates surrounding
Waxman-Markey. See Bohringer and Rutherford (1997) for a discussion of carbon tax exemptions for energy-intensive or
export-based sectors. They find that exempting sectors responsible for only 12% of baseline emissions raises the costs of
achieving a 30% cut in emissions by around 20%.

3Although it is theoretically possible to achieve socially optimal outcomes without observing emissions, implementation is
unlikely to be practically feasible (see (Griffin and Bromley, 1982; Fullerton and West, 2002)). One takeaway of these papers
is that unless policies can be differentiated across polluting sources, the socially optimal outcome can only be achieved under
very restrictive assumptions regarding regulated entities’ technology, behavior and emissions schedule.

4The compensation requirement is similar in nature and implementation to the “equity value neutrality” constraint studied
by Bovenberg et al. (2005) and Bovenberg et al. (2008).
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performance of policy instruments suitable for addressing an unobservable source of emissions, such as input

taxes or restrictions, is theoretically ambiguous and depends heavily on the characteristics of the regulated

firms (Helfand and House, 1995; Fullerton and Gan, 2005). Likewise, policies induce differential impacts on

regulated firms’ profit based on abatement actions undertaken, the revenue collected by the policy, and any

output price response (Stevens, 1988; Buchanan and Tullock, 1975). Considering unobservable emissions

and profit impacts jointly implies a tension between efficiency and distributional concerns through at least

two channels. First, policies that induce larger than optimal increases in output prices will lead to relatively

high efficiency costs and profit. Second, policies that raise revenue, such as an input tax, will likely have

lower costs than an equivalent quantity policy, such an input rate restriction, if the revenues can be used

to alleviate distortions elsewhere in the economy (Goulder, 1995). However, the input tax will result in a

larger reduction in firms’ profit because it raises the costs of all units of the input, whereas the input rate

restriction only affects profits through the change in input use (Buchanan and Tullock, 1975). I explore

the tradeoffs between alternative policies by calculating the costs of emissions reductions for a variety of

instruments, with and without the compensation requirement in place. Through this analysis, I am also able

to evaluate if either constraint, unobservable emissions or distributional concerns, warrant leaving a sector

unregulated for climate purposes.

My analysis focuses on policies to reduce GHG emissions from the agricultural sector. Indeed, a

secondary goal of this paper is to provide national-scale cost estimates for policies to reduce agricultural

emissions. The motivation for focusing on the agricultural sector is straightforward. The sector contributes

12% of annual global emissions (IPCC, 2014) and is often a predominant share of emissions exempt from

climate regulations.5 Designing policies to reduce agricultural emissions is complicated by unobservable

emissions and distributional concerns. GHG emissions from agriculture depend on the production decisions

of many farmers who face heterogeneous weather and soil characteristics. Absent continuous field-level

monitoring, which is prohibitively costly (Hensen et al., 2013), agricultural emissions are unobservable.

Agricultural stakeholders wield a unique political influence and policymakers continue to protect the sector

(Bellemare and Carnes, 2015). In spite of these complications, there have been prominent calls for reducing

emissions from agriculture (IPCC, 2014; UNEP, 2013). However, national-scale estimates of the costs of

agricultural mitigation policies are sparse, calculate only primary costs and focus on unfeasible emissions-

based policies (McCarl and Schneider, 2001; De Cara et al., 2005).

To this end, I use analytical and numerical general equilibrium models to evaluate the costs of re-

ductions in the primary source of GHGs from US agriculture, nitrous oxide (N2O) emissions from cropland

5Under Waxman-Markey, agriculture would have made up around 30% of excluded emissions, based on the 72% of US
emissions covered by the program (CBO, 2009) and 8% of total US emissions attributable to agriculture (EPA, 2014).
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agriculture (EPA, 2014), with and without the requirement that the agricultural sector is compensated for

changes in profit.6 The models capture the primary channels through which farmer decisions affect N2O

emissions, crop choice and mineral nitrogen (N) application rates (Millar et al., 2010; Ribaudo et al., 2011),

and account for the heterogeneity in yields and emissions rates that is a key determinant of the performance

of alternative policies. Farmers managing fixed parcels of land with heterogeneous quality (capturing both

soil and climate characteristics) choose N application rates and the share of land to allocate to a set of crops

to maximize profit. Yield and emissions for each crop are functions of N rates and depend on a parcel’s land

quality. A representative consumer demands crops and a composite good, and supplies labor based on the

real wage. The government sets environmental policies and compensation levels, which are implemented as

lump sum transfers to the agricultural sector, and maintains a balanced budget by adjusting a preexisting

tax on labor.

With the analytical model, I assess the gross costs associated with a marginal change in three simple

mitigation policy instruments, an emissions tax, an input tax and an input rate restriction. I decompose

the change in gross costs into primary costs, which reflect input and land allocation effects, the standard

tax interaction and revenue recycling effects and a compensation effect. These decompositions provide

intuition regarding the margins of adjustments that drive gross costs and how heterogeneity in production

characteristics affects the performance of the alternative instruments.

The numerical model is a national-scale integrated biophysical and general equilibrium framework

that accounts for agricultural production decisions at the county level and prices and consumer decisions

at the national level. To date, it is the most comprehensive framework for estimating the costs of N2O

mitigation policies and, to my knowledge, the first attempt to integrate a detailed agricultural sector into

a general equilibrium framework similar to those used to analyze environmental policy choice (e.g. Goulder

et al. (1999)), which endogenize labor supply and the public sector. The model represents the production of

seven crops in nearly 2,000 counties across 35 states, covering 90% of US cropland allocated to field crops.

To accurately represent the heterogeneity in yield and emission functions at the county scale, I rely on a

unique dataset of biophysical model output that provides information on marginal yields, emissions rates

and marginal emissions rates, none of which could be recovered from observational data for the required

spatial coverage.

Using the numerical model I compute national-scale estimates for the costs of mitigation policies

that account for the significant heterogeneity in yields and emissions functions across crops and space, and

6Agricultural N2O emissions make up more than half of total agricultural greenhouse gas emissions in the US and are of
the same, or larger, magnitude as emissions from oil combustion by industrial sources, natural gas use by residential sources,
CO2 from aviation and methane from livestock operations (EPA, 2014). Due to the magnitude of these emissions, there is
substantial interest in policy options to reduce agricultural N2O (Reay et al., 2012; UNEP, 2013). Yet, to date, comprehensive
estimates of the costs of reducing N2O are limited.
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both detailed farm-scale adjustments and equilibrium changes in the prices of crops and food. Relative to

the analytical model, it also allows me to consider more complicated policy configurations and non-marginal

reductions in N2O. I calculate the costs of achieving targeted levels of emissions reductions using an emissions

tax, and a range of policies suggested for addressing unobservable sources of emissions: uniform and non-

uniform taxes on N fertilizer, high and low cost restrictions on N application rates, and a combination of

non-uniform N and crop acreage taxes.

I draw four main takeaways from my analysis. First, policies that regulate easily observable quantities

can reduce agricultural N2O at costs approaching those of a first-best policy. Consistent with earlier work

(McCarl and Schneider, 2001), I find that the economic potential for reducing agricultural N2O is modest. A

5% reduction in N2O, roughly 8 TgCO2e, can be achieved with marginal primary cost of approximately 30

$/tCO2e using an emissions tax. Unlike previous work, I provide national-scale primary cost estimates for

implementable alternative policies that do not require emissions to be monitored. Although a uniform tax

on N and input rate restrictions are prohibitively costly, around 50% higher marginal primary costs than the

emissions tax for a 5% reduction in N2O, the non-uniform N tax and the combination of the non-uniform N

tax and a crop acreage tax are only 15% and 11% more expensive than the emissions tax. Based on primary

costs, non-uniform and combinations of input taxes appear to be reasonable replacements for an emissions

tax. Cost estimates of this nature would be difficult to obtain from more aggregate frameworks or reduced

form methods, since the within-region variability in yields and emissions rates obtained from the biophysical

model drives the cost differences between the emissions tax and the non-uniform input taxes.

Second, primary cost estimates, generally used to evaluate agri-environmental policies, can provide

misleading estimates of the social cost of alternative mitigation policies. Gross costs can fall above or below

primary costs, and may even be negative (signifying an increase in welfare). For the emissions tax, primary

costs for a 5% reduction in emissions are $111 million while gross costs are -$461 million. The reason for

negative gross cost is the presence of land as a fixed factor of production. Since land generates profits

that are not fully taxed, the environmental taxes serve as surrogate profit taxes that shift the burden of

taxation away from labor to land (Bento and Jacobsen, 2007). Although the ordering of policies based on

gross costs are nearly unchanged from those based on primary costs, the differences in gross costs relative

to the emissions tax tend to be much larger. For a 5% reduction in N2O, the gross costs of the uniform

and non-uniform N taxes are at least twice as large, and the input rates restrictions approaching three times

as large, as the emissions tax. These large differences occur because the alternative policies generate less

revenue than the emissions tax or no revenue at all. In contrast, the combination of non-uniform N and

acreage taxes is relatively more cost effective because the acreage taxes are a close replacement for a profit

tax.
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Third, the compensation requirement dramatically changes the ranking of policy instruments based

on gross costs. Strikingly, the emissions tax is no longer always the least cost policy. In fact, at a 5%

reduction, all policies except the high cost input restriction and non-uniform N tax outperform the emissions

tax. This result mirrors Bovenberg et al. (2008) who show that with compensation constraints in place

a technology mandate and performance standard can outperform an emissions tax. I show that different

configurations of input taxes can also dominate an emissions tax. The gross cost with compensation results

illustrate how profit concerns complicate general advice regarding policy instrument choice in the presence

of unobservable emissions. Strategies suggested for reducing the primary costs of regulating unobservable

emissions may increase or decrease gross costs when the compensation requirement is imposed.

Finally, in the context of agricultural N2O, neither unobservable emissions nor profit considerations

seem to justify leaving the sector unregulated for climate purposes. Observing emissions does not meaning-

fully lower costs. If profit impacts are not a concern, then taxes on easily observable quantities can match

the performance of an emissions tax in terms of primary or gross costs. If profit impacts are a concern, then

observing emissions may be unnecessary. For modest cuts in emissions each of the alternative taxes and the

low cost restriction dominate the emissions tax if compensation is in place. Concerns over the impacts of

climate legislation on the welfare of the agricultural sector may be unfounded. Since agriculture production

relies heavily on fixed factors of production and faces inelastic demand for its products, profits stand to

increase in response to climate legislation. To the extent that profits to land owners reflect the well-being of

the agricultural sector, mitigation policies may actually benefit the sector.

The rest of the paper is organized as follows. In the next Section I discuss the relationship between

my work and previous literature on environmental policy choice and agricultural mitigation. In Section 3 I

provide background on the biophysical and management drivers of agricultural N2O. The analytical model

and decompositions of primary and gross costs are presented in Section 4. I lay out the numerical model,

discuss data and calibration, and present numerical results in Sections 5, 6 and 7 respectively. Section 8

concludes.

2 Relation to Prior Literature

This paper builds on broad sets of literature focused on designing environmental policies in second-best

settings and evaluating the costs of reducing GHGs from agriculture.

5



Policy Choice in Second-best Settings

The three defining characteristics of the policy choice problem addressed in this paper are unobservable emis-

sions, compensation requirements for changes in the regulated firms’ profit, and a preexisting distortionary

tax system which is adjusted to fund compensation. Streams of literature on environmental policy choice

in second-best settings provide guidance regarding the influence of each characteristic on policy choice, but

this is the first paper to directly evaluate the costs of environmental regulation in the presence of all three

characteristics. By accounting for all three characteristics in a single setting, I am able to provide a rich

analysis of the potential costs of mitigation policies, and to explore which characteristic has the largest

impact on the costs of emissions reductions.

When emissions are unobservable, the theoretical literature suggests that a range of policies based

on observable quantities could be applicable. Many authors provide motivation for taxing goods related to

emissions (for example Green and Sheshinski (1976) or Sandmo (1978)), but policies that are able to control

all channels that lead to emissions can be more cost effective. When there are a large number of heterogeneous

pollution sources, non-uniform or multipart instruments are likely to be more efficient than single, uniform

regulations of observable factors (Fullerton and West, 2002; Griffin and Bromley, 1982).7 In fact, first-best

outcomes can be achieved with sufficiently differentiated tax rates or complex multipart instruments, but

may be impractical due to extreme information requirements or high implementation costs. The inefficiency

of alternative policies, relative to an emissions tax, is theoretically ambiguous, and depends on the channels

through which a policy induces abatement and the heterogeneity of affected firms’ technology and emissions

schedules (Helfand and House, 1995; Fullerton and Gan, 2005; Fullerton and West, 2010; Knittel and Sandler,

2013).

A large body of research has emphasized that the gross costs of environmental policies may be drasti-

cally affected by preexisting distortionary taxes, such as an income tax (see Goulder (1995) for an introduction

and summary). Gross costs consists of primary costs, which is the standard Harberger triangle measuring

deadweight loss in the regulated market, and two additional effects. The tax interaction effect captures

the efficiency losses that are incurred as the environmental program exacerbates the preexisting distortion,

typically through changes in the real wage. The revenue recycling effect accounts for efficiency gains from

alleviating the preexisting distortion using revenues from the environmental program. Most studies in this

area analyze the case where the tax system is optimal in the baseline and find that preexisting taxes elevate

the gross costs of environmental policies because the tax interaction effect dominates the revenue recycling

7The inability to observe firms’ emissions is a key feature of non-point source pollution from agriculture. There is a long and
detailed literature on policy instrument choice in this setting, see Shortle and Horan (2001) or Xepapadeas (2011) for reviews.
Non-point source pollution policies must also address the stochastic nature of emissions and marginal damages varying across
sources, but may be able to exploit observable ambient pollution levels (Segerson, 1988).
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effect. Bento and Jacobsen (2007) show that the presence of a fixed factor of production, such as land, may

reverse this result. Profit generated by a fixed factor would be fully taxed in an optimal tax system, but this

is unlikely to occur in practice. An environmental policy that serves as a surrogate for the missing profit tax

can therefore improve the efficiency of the tax system by shifting the burden of taxation towards the fixed

factor.

The distributional impacts of climate policy have also received significant attention, particularly with

regards to the regressivity of a carbon tax (Dinan, 2012; Fullerton et al., 2012; Williams et al., 2014).8

A related set of papers focuses on alleviating the impacts of environmental programs on regulated firms.

Bovenberg et al. (2005) and Bovenberg et al. (2008) demonstrate how the gross costs of environmental

programs are affected if regulated firms are compensated for changes in profit induced by an environmental

policy. If profits in the regulated sector fall, gross costs increase because the tax on labor must be raised

to fund the compensation. In a setting with imperfect capital mobility, Bovenberg et al. (2008) show that

a performance standard and technology mandate have relatively small impacts on profit and are therefore

preferred to an emissions tax for modest reductions in emissions. The emissions tax reduces profit by raising

the cost of all units of emissions, marginal and residual, while the standard and mandate affect profit only

through the marginal changes in abatement activities. My work builds on these papers by studying additional

instruments, including different configurations of input taxes and restrictions that are relevant for regulating

an unobservable source of emissions. I show that with a compensation requirement in place, input taxes may

also dominate the emissions tax, and, depending on its design, an input rate restriction may or may not be

preferred to an emissions tax.

In addition to exploring the implications of unobservable emissions and distributional concerns for

policy instrument choice, a contribution of my work is to examine how the costs of regulating unobservable

emissions are affected by the presence of preexisting taxes. The literature on regulating unobservable emis-

sions has largely focused on evaluating the primary costs of policy options and abstracted from interactions

with the preexisting tax system.9 Studies that evaluate the implications of fiscal interactions on environmen-

tal policy choice analyze contexts where emissions can be monitored and are based on models that aggregate

sectors into single representative firms (for example Goulder et al. (1999)).

8The papers most related to my are those that show that the regressivity of a carbon tax depends on how the tax revenues
are used to compensate affected groups (Dinan, 2012; Williams et al., 2014).

9The notable exception is Fullerton and Wolverton (2005), who derive the optimal two-part instrument for regulating
pollution that cannot be taxed directly in the presence of a revenue raising requirement.
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GHG Mitigation in the Agricultural Sector

Previous literature on the cost of GHG mitigation in agriculture falls into two broad groups. The first

group of studies assess the costs of agricultural mitigation at a national scale using linear programming

models (McCarl and Schneider, 2001; De Cara and Jayet, 2000; De Cara et al., 2005). McCarl and Schneider

(2001), the most prominent of these studies, highlight the considerable economic potential for mitigation in

the agriculture and forestry sectors using a model with a host of mitigation options, including crop, tillage

and input intensity choice, biofuels and afforestation. A limitation of these models is that each relies on

simplified relationships between management options, yields and emissions. N application rates are constant

in De Cara and Jayet (2000) and De Cara et al. (2005), and discrete options in McCarl and Schneider (2001).

Moreover, the relationship between activities and emissions are captured using IPCC default methods at an

aggregate level, which only partially account heterogeneity in the relationship between N applications and

N2O emissions due to soil and climate characteristics. This heterogeneity of yield and emissions responses

to management changes plays a critical role in determining the performance of mitigation policy options.

The second group of studies incorporate data from biophysical models into econometric or economic

programming models in order to capture more realistic yield and emissions responses to management changes

and heterogeneity in these relationships (Antle and Capalbo, 2001; Antle et al., 2003, 2007; Mérel et al.,

2014; Garnache et al., 2014). The integration of biophysical data has proven crucial for estimating the costs

of mitigation options. For example, Antle et al. (2003) illustrates that efficiency of per hectare contracts

for carbon sequestration, relative to the optimal per ton contract, is negatively correlated to the spatial

heterogeneity in production characteristics. A common feature of the linked biophysical and economic

models is their focus on small regions or a limited number of management options. Antle and Capalbo

(2001) and Antle et al. (2003) focus dryland grain production in Montana, while Antle et al. (2007) focus on

two broad cropping systems in the central US. The work by Mérel et al. (2014) and Garnache et al. (2014)

focus on the production of seven crops in California’s Central Valley.

My work extends the literature on agricultural mitigation along three dimensions. First, I construct a

linked general equilibrium and biophysical model at the national level that accounts for heterogeneity in yield

and emissions responses at the county level. Therefore, the model can capture how heterogeneity affects the

performance of national-level policies, which is crucial in the context of N2O, and the impact of mitigation

policies on other national-level outcomes, such as the price of crops and food. Second, unlike most previous

work, which either assumes that emissions can be directly regulated (McCarl and Schneider, 2001; De Cara

and Jayet, 2000; De Cara et al., 2005; Antle et al., 2007) or analyzed practice-based subsidies (Antle et al.,
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2003), I analyze a variety of policy options suited to addressing unobservable emissions.10 Therefore, my

results provide more appropriate estimates of the costs of harnessing the mitigation potential of agriculture

and offer insights regarding the design of policies for this purpose. Third, unlike each of the prior papers,

which assess only primary costs, I assess both primary and gross costs of agricultural mitigation. Chambers

(1995) and Parry (1999) illustrate that gross costs may differ drastically from primary costs for agricultural

policies, but this insight has yet to be applied to agricultural mitigation.

3 Background

3.1 Agriculture and GHGs

Agriculture is a substantial source of GHG emissions, making up roughly 12% of annual global emissions

(IPCC, 2014) and roughly 8% of annual US emissions (EPA, 2014).11 If current trends in population

and economic growth and food consumption persist, emissions from agriculture are projected to increase

substantially in the coming decades (Popp et al., 2010; EPA, 2012).

Policymakers increasingly recognize the need to reduce emissions from agriculture. In the recent 5th

Assessment Report the IPCC states, with regards to the agricultural sector, that: “leveraging the mitigation

potential in the sector is extremely important in meeting emissions reductions targets” (IPCC, 2014). In

California, the goal of establishing GHG reduction targets for agriculture was approved as part of the recent

update to the Scoping Plan for AB 32, the Global Warming Solutions Act passed in 2006 (CARB, 2014).

However, agriculture is typically exempt from climate legislation.12

3.2 Agricultural N2O

The focus of this paper is emissions of nitrous oxide (N2O) from cropland agriculture, which is the single

large source of emissions from agriculture. In the US, cropland N2O contributes more than half of all GHGs

from agriculture and nearly 5% of total GHGs (EPA, 2014).13 N2O is a potent GHG that is roughly 300

10The exception is Garnache et al. (2014) who study the primary costs of reducing agricultural emissions when an emissions-
based policies are unavailable. Relative to this work, I consider a broader set of policies, including acreage taxes and rate input
restrictions, and account for preexisting distortions. In addition, my framework is national in scale so heterogeneity in yield
and emissions may be of more importance and differentiated policies may be more relevant. Unlike Garnache et al. (2014), I
only account for N2O and do not account for changes in irrigation and tillage intensity.

11According to IPCC (2014), agriculture, forestry and land use contribute 24% of global GHGs, about 10 GtCO2e. Agricul-
tural production comprises just over half of this total.

12Agriculture was uncapped in the Kyoto Protocol, but agricultural mitigation projects could have received payments through
the Clean Development Mechanism and Joint Implementation programs. Proposed federal climate legislation in the United
States has rarely covered agriculture, but provisions for agricultural offsets are generally supported by lawmakers (Johnson,
2009). For example, Waxman-Markey allowed offsets to cover a substantial and increasing share of required emissions reductions,
26% in 2016 and 66% in 2050 (Yacobucci et al., 2009). Offsets from domestic agricultural projects would have contributed to
this total.

13A variety of other activities contribute to agricultural GHG emissions. Methane released due to enteric fermentation in
ruminant animals, such as cattle, is the second largest source of agricultural GHGs (IPCC, 2014). Changes in soil carbon stocks
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times more powerful than CO2 on a global warming potential basis.14 Over 70% of agricultural N2O results

from the application of fertilizer to cropland soils (EPA, 2014). As a result, there is strong interest in policy

options that induce changes in farmer behavior to reduce N2O (Robertson and Vitousek, 2009; Cavigelli

et al., 2012; Reay et al., 2012; UNEP, 2013).

N2O emissions are generated primarily due to agriculture’s impact on the nitrogen cycle.15 N is a

fundamental element for plant growth but is deficient in most intensive agricultural systems because the N

removed in crop yields vastly outstrips the natural deposition of N to soils (Robertson and Vitousek, 2009).

Leguminous crops, such as soybeans, fix atmospheric N into soils, which provides most of the N required

by the crop. To sustain growth of non-leguminous crops, and some leguminous crops, N is added to soils,

typically in the form of chemical fertilizer or manure (Erisman et al., 2008). However, not all N available

in agricultural soils is used by the crop. Excess N in soils leads to a number of environmental problems,

including elevated emissions of N2O.16 Excess N leads to N2O directly and indirectly. Direct N2O emissions

are generated by microbial nitrification and denitrification processes in the soils where N is applied. Indirect

N2O emissions are generated when N is transported from the soils to which it was applied in forms other than

N2O, through either volatilization or leaching and runoff, and subsequently converted to N2O elsewhere.17

Direct emissions are generally understood to be the major contributor to N2O, but Turner et al. (2015)

suggest that emissions from the leaching and runoff pathway could be substantially larger than previously

thought.

This work focuses solely on agricultural N2O for two reasons. First, despite being the single largest

source of GHGs from agriculture both in the US and globally, no studies analyze policy options to reduce

agricultural N2O at a national scale. Second, although much attention has been payed to carbon sequestration

in cropland soils (Antle et al., 2003; Sperow et al., 2003; UNEP, 2013) there are serious questions regarding

the potential for changes in agricultural management to achieve permanent emissions reductions through

changes in soil carbon stocks. For example, Powlson et al. (2014) note that much of the potential increase in

soil carbon due to many years of reduced tillage intensity could be lost due to conventional tillage in a single

due to agricultural activities can be either a source or sink of GHGs (EPA, 2014).
14It is worth noting that the marginal social cost of N2O may actually be higher than the GWP of N2O times social cost of

CO2. Marten et al. (2015) find that when calculated in a manner consistent with estimates of the social cost of CO2, the social
cost of N2O should be closer to 314-387 times the social cost of CO2.

15See Robertson and Vitousek (2009) or Cavigelli et al. (2012) for a detailed review of agriculture’s role in the nitrogen cycle.
16In addition to being a greenhouse gas, N2O is currently the largest contributor to depletion of the ozone layer, primarily

because it is unregulated by the Montreal Protocol (Ravishankara et al., 2009). Excess N that makes its way into water can cause
algal blooms and hypoxic zones, such as the “Dead Zone” in the Gulf of Mexico, and can contribute to nitrate contamination
of drinking water, which may affect human health (Powlson et al., 2008). If released to the air, N can increase levels of
particulate matter and ground level ozone, both of which affect human respiratory and cardiovascular systems. Moreover,
ammonia emissions and the deposition of N to downwind locations can affect the biodiversity of the affected ecosystems. See
Sutton et al. (2011) for a summary of a large-scale study quantifying the costs of excess N in Europe.

17Despite fixing atmospheric N, leguminous crops increase atmospheric GHGs. These crops fix atmospheric N2, which is not
a GHG, into soils, thus making N available for conversion to N2O.
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year, a common practice in some regions.18 Moreover, soils have a limited capacity to store carbon. While

shifts in management may result in increased soil sequestration for a number of years, the sequestration

rate will fall to zero as soil carbon approaches equilibrium levels (Powlson et al., 2014). In contrast, N2O

reductions are permanent, irreversible and can be realized in perpetuity.

Determinants of N2O Emissions

N2O emissions from cropland agriculture depend on the production decisions of many farmers operating

under diverse soil and weather conditions. Cropland N2O emissions largely depend on the level of excess N

in soils, which is roughly the difference between N additions and N uptake by the crop. The rate at which

excess N is converted to N2O depends on the biophysical conditions of the soil, such as soil texture, moisture

and temperature (Robertson and Groffman, 2015). Farmers’ choices affect N2O emissions either by altering

excess N or the biophysical conditions in soil (Parkin and Kaspar, 2006). Farmers’ choice of crop, because

N uptake rates differ by crop, and N additions are the key determinants of excess N (Eagle et al., 2012).19

Irrigation and tillage are examples of management choices that alter N2O emission rates by changing soil

conditions.

All else equal, soil characteristics and climate/weather lead to considerable spatial heterogeneity in

cropland N2O emissions rates (Del Grosso et al., 2006, 2012). Del Grosso et al. (2012), find that N2O

emissions rates, the percent of N applied released as N2O, tend to be highest for soils that are fine textured,

high in organic matter and wet, either due to precipitation or irrigation. The management decisions and soil

conditions that impact N2O rates also affect the returns to cropland through yields and production costs

(Balasubramanian et al., 2004). The resulting differences in farmers’ management choices are an additional

driver of variation in N2O emissions. Table A.6 displays the heterogeneity across crops and regions in baseline

N2O rates used in my analysis.

Monitoring N2O Emissions

Due to the nature of the emissions generation process, wide-scale monitoring of N2O emissions is difficult

with current technology. Monitoring must take place at a fine spatial and temporal resolution to account for

the heterogeneity in emissions rates, the influence of the management decisions of many individual farmers

18Powlson et al. (2014) also emphasize that experimental and model evidence does not necessarily support the claim that
reductions in tillage intensity will result in increased carbon stocks.

19Timing and placement of N additions are also choices that affect excess N (see Eagle et al. (2012) for a review). Placing N
closer to the active root zone of the plant lowers the availability of N for conversion to N2O. N demands of a crop vary across
the growing season, which creates a temporal dimension of excess N. Timing N applications to match periods of high N demand
by the crop can therefore reduce N2O emissions. Eagle et al. (2012) also note that the type of fertilizer used, particularly slow
release types and those with nitrification inhibitors, may affect N2O emissions.
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and the temporal distribution of emissions.20 Measurements from static chambers on cropland is the current

economical monitoring option for experimental observation (Hensen et al., 2013). However, using this method

at the national scale would be technically impractical and prohibitively costly. New approaches, relying on

micrometeorological methods and infrared technology, are being developed that could provide more frequent

measurements at the farm scale, but are not yet available at reasonable costs (Hensen et al., 2013).

4 Analytical Model

This section presents an analytical model, in the spirit of Goulder et al. (1999) but with heterogeneous firms,

that can be used to assess the efficiency costs resulting from a marginal change in policy options to reduce

agricultural N2O. I present formulas that decompose the primary costs of each policy, as well a formula that

illustrates the additional costs due to interactions with the distortionary tax system and the compensation

requirement. Emissions, input and crop acreage taxes and an input rate restriction are considered in the

analytical model. More complicated policy configurations, such as non-uniform input taxes and combinations

of policies assessed in the numerical model. The taxes were selected under the assumption that the regulator

observes the total quantity of inputs purchased for use on each parcel and the allocation of land in each

parcel.21 The input rate restriction is an example of a quantity policy, but is more information intensive and

difficult to enforce because the regulator must be able to observe input quantities applied to each crop.22

Information and enforcement costs are not considered in this analysis.

4.1 Framework

General Environment

Consider a static model of an economy with two factors of production, labor (L̄) and land (Ā). Labor is

perfectly mobile, while land is immobile. The land endowment in divided into I regions indexed i = 1 . . . I.

Within each region there are Ji heterogeneous parcels of various sizes, indexed j = 1 . . . Ji. The total land

area available in each parcel is given by Āij . Land is combined with intermediate inputs to produce K

crops indexed k = 1 . . .K. Pollution emissions (E) are generated by the production of crops, with marginal

emissions varying by crop, region and parcel and with the use of intermediate inputs. All markets are

assumed to be perfectly competitive. The wage rate is normalize to 1.

20N2O is emitted throughout the year, but rates are typically highest immediately following fertilizer applications (see for
example Hoben et al. (2011)). A monitoring system that does not measure emissions during these periods could significantly
underestimate emissions.

21These quantities can be observed at very low cost since commercial fertilizer distributors must be registered through state
control boards, and land allocation at the field level are obtainable through existing remote sensing efforts (NASS, 2014a).

22Implementing an input rate restriction would require tracking inputs between purchase and use, monitoring field-level
activities or accurate self reporting.
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Demand

A representative consumer derives utility from crops, denoted by Ck, a composite consumption good C and

leisure and is harmed by emissions. The representative consumer’s utility function is given by:

U
(
C1, . . . CK , C, L̄− L

)
− φ (E) (1)

where U(·) is the utility from consumption and φ is the disutility from emissions. U is continuous, differen-

tiable and strictly quasiconcave in all its inputs, and φ is continuous, differentiable and weakly convex.

The representative consumer’s income comprises the returns to the labor and land endowments and

a fixed transfer from the government, GC :

∑
k

PkCk + C = ΠA + (1− tL)L+GC (2)

where Pk is the price of crop k, ΠA is aggregate profit from the land endowment and tL is the labor tax. The

consumer chooses Ck, C and L to maximize utility subject to the budget constraint but does not account

for their effect on emissions when making consumption choices. Solving the resulting first-order conditions

yield the uncompensated demand and labor supply functions:

Ck (P1 . . . PK , tL,ΠA) ∀ k ∈ K

C (P1 . . . PK , tL,ΠA)

L (P1 . . . PK , tL,ΠA) (3)

which when substituted into (1) yields the indirect utility function:

V = v (P1 . . . PK , tL,ΠA)− φ(E). (4)

Production

Each parcel of land is independently managed to maximize profits by a risk neutral representative landowner.

Productivity and emissions, per unit land, are heterogeneous across crops and parcels. The landowner

chooses the quantity of land to allocate to each crop, Aijk, and can influence productivity and emissions
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using intermediate inputs. Let productivity and emissions per unit land be:23

yijk (nijk) eijk (nijk) (5)

where nijk is the quantity of an intermediate input, N , used in crop production. yijk and eijk are assumed

to be continuously differentiable. N is a polluting input that boosts productivity, at a decreasing rate, and

increases emissions rates.24 One can think of y as crop yields, N as nitrogen fertilizer and e as the sum of

direct and indirect N2O emissions per unit land.

Labor used for each parcel’s production of crops is made up of two components. The first compo-

nent is a fixed quantity of labor per unit land allocated to each crop, lijk, that accounts for all variable

inputs other than N . The second component is land management costs that depend on the parcel’s land

allocation, Lij (Aij1, . . . , AijK) and captures factors other than net returns, such as land quality, that induce

diversification of crop production within parcels.

To simplify notation denote Aij and nij as vectors of length K that represent the land allocation and

per unit land input usage for parcel ij. On each parcel, the landowner chooses a land allocation and input

vectors to maximize profit subject to a land constraint:

Πij (P1 . . . PK , PN ) = max
Aij ,nij

∑
k

πijkAijk − Lij (Aij1, . . . , AijK)

subject to:

πijk = Pkyijk − PNnijk − lijk ∀ k ∈ K∑
k

Aijk ≤ Āij (6)

where πijk is the net returns per unit land to crop k in parcel ij.25

The solution to each landowner’s problem yields the optimal land allocation, Aij (P1 . . . PK , PN , PM ),

and per unit land input demands, nij (P1 . . . PK , PN , PM ). These functions then determine the total supply

of crop k, Yk =
∑
ij yijk (nijk)Aijk, total emissions, E =

∑
ijk eijk (nijk)Aijk, and total labor used for crop

production, LA =
∑
ijk Aijklijk +

∑
ij Lij . Total use of the intermediate inputs and total returns to land

can be calculated with similar formulas.

Landowners receive a lump sum transfer, GA, from the government to compensate for any changes

23Unless otherwise noted, lowercase letters represent quantities per unit land, while capital letters represent total quantities.

24Formally
∂yijk
∂nijk

> 0,
∂2yijk
∂n2
ijk

< 0,
∂eijk
∂nijk

> 0.

25A limitation of the modeling framework is its treatment of the N application rate decision. The framework does not account
for risk preferences, yield or price uncertainty or other behavioral or informational aspects of the input use decision (Stuart
et al., 2014). However, there is suggestive evidence that in recent years N is managed at economically optimal rates for the
majority of corn acres (Ribaudo et al., 2012).
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in aggregate profit due to the environmental program. The size of this transfer is GA = Π0
A − ΠA where

Π0
A are aggregate profits to the land endowment prior to the imposition of the environmental policy. In

this framework, the transfer does not affect production decisions. Therefore, how the aggregate transfer is

distributed amongst landowners has no impact on an instrument’s efficiency cost.

Finally, the intermediate inputs and the composite consumption good are produced from labor and

are denoted in units so that the marginal productivity of labor in each sector is equal to one (N = L, C = L).

This establishes PL = PN = 1.

Government

The government sets policies to reduce total emissions, funds the transfer to the consumer and compensates

producers for any change in profit due to the environmental program. The government’s budget is assumed

to be balanced. Revenues generated by the environmental policies, therefore, fund reductions in the labor

tax.

Equilibrium

Equilibrium is a set of crop prices Pk such that profits to the land endowment and utility are maximized

and the crop and labor markets clear:

Ck = Yk ∀k ∈ K

L̄− L = C +N + LA. (7)

4.2 Primary Cost Decompositions

I start by decomposing primary costs into the channels through which each policy reduces emissions. To

isolate primary costs, I set tL = 0, neutralize the revenue of the environmental program with a lump

sum transfer to the consumer and do not compensate producers for changes in profit. I account for the

implications of preexisting taxation and compensation in Section 4.3.

Emissions Tax

If emissions are observable, an emissions tax is available and is the least cost policy. Assume that each

landowner is taxed at rate tE for emissions generated by their production activities. The per unit profit

functions become πijk = Pkyijk − nijk − lijk − tEeijk. The tax revenue from the policy, and therefore the

transfer to the consumer, is GC = tEE.
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The primary cost, excluding the benefits from emissions reductions, of a marginal increase in the

emissions tax is:

− 1

λI

dV

dtE
= −tE

∑
ijk

eijk
dAijk
dtE︸ ︷︷ ︸

dWA

+
∑
ijk

Aijk
(
Pky

n
ijk − 1

)(
−dnijk
dtE

)
︸ ︷︷ ︸

dWN

(8)

where λI is the marginal utility of income and ynijk =
∂yijk
∂nijk

. The first term, dWA, is the land allocation

effect, which is the efficiency cost of landowners shifting land away from emissions intensive crops. This

effect equals the sum across all parcels and crops of the change in the land allocation times the change in

per unit profit due to the emissions tax. The second term, dWN , is the input effect. The input effect is the

cost, due to lost profits to the land endowment, resulting from reduced use of the polluting input.

The emissions tax is efficient because the cost of the policy is distributed across both channels of

adjustment. The alternative policies are unable to fully utilize each of the channels to reduce emissions, and

are therefore more costly.

Uniform Input Tax

Consider a tax on the polluting input, tN . The per unit profit functions are πijk = Pkyijk−(1 + tN)nijk−lijk

and tax revenue is GC = tNN . The efficiency costs of a marginal increase in the input tax is:

− 1

λI

dV

dtN
= −tN

∑
ijk

nijk
dAijk
dtN︸ ︷︷ ︸

dWA

+
∑
ijk

Aijk
(
Pky

n
ijk − 1

)(
−dnijk
dtN

)
︸ ︷︷ ︸

dWN

. (9)

The uniform input tax exploits the input effect, but only partially exploits the land allocation effect. The

land allocation effect is only partially utilized because the change in crops’ per unit profit due to the tax

depends on the use of the polluting input rather than the contribution of the input to emissions.

Acreage Tax

Since the land allocation is observable, a tax on the land allocated to a heavily polluting crop, indexed h,

may be reasonably easy to implement. The per unit profits of crop h are πijh = Phyijh − nijh − lijh − tAh,

and government payments are: GC =
∑
ij AijhtAh. The efficiency costs of a marginal increase in an acreage

tax is:

− 1

λI

dV

dtAh
= −

∑
ij

(
πijh − Lhij − λij

) dAijh
dtAh︸ ︷︷ ︸

dWA

(10)
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where λij is the multiplier on the land constraint in parcel ij and Lhij are the marginal management costs with

respect to land in crop h. The efficiency cost is the sum across all parcels of the change in profit from shifting

a unit of land away from the heavily polluting crop into an alternative crop times the change in the land

allocated to the heavily polluting crop.26 The acreage tax only partially utilizes the land allocation effect

because the tax does not alter the per unit profits of other polluting crops or account for the heterogeneity

in emissions for the taxed crop across parcels.

Cost of an Input Rate Restriction

Using “best practice guidelines” to induce changes in management is a frequently recommended strategy to

address externalities from agriculture.27 As an example of this type of approach, I analyze an input rate

restriction, which can be thought of as an enforceable upper limit on the application rate of the polluting

input. Consider a restrictions on the application rate of the polluting input to a heavily polluting crop,

n̄h. Let the set Θ contain all of the parcel/crop combinations for which the input rate restriction binds,

Θ =
{
i ∈ I, j ∈ Ji | n∗ijh ≥ n̄h

}
, where n∗ijh represents the unrestricted optimal application rate. The costs

of an incremental change in the input rate restriction, assuming that Θ is unaffected, is:

− 1

λI

dV

dn̄h
=
∑
ij∈Θ

Aijh
(
Pky

n
ijh − 1

)
︸ ︷︷ ︸

dWN

. (11)

An input restriction only utilizes the input effect, which is the sum of the change in profit due to a unit

reduction in the polluting input for all binding parcels. But, relative to an emissions tax, the input effect

is not fully utilized for two reasons. First, all parcels for which the input restriction binds will be affected

by the policy in the same manner, as opposed to having a varying effect to account for the variation in

marginal productivity and emissions across parcels. Second, the input effect need not be spread across all

parcels, since parcels with unrestricted application rates below the maximum level are not required to lower

application rates. Unlike an input tax, there is no land allocation effect because an incremental change in

the restriction induces only a marginal change in the relative returns to the polluting crop.

The primary cost formulas illustrate the channels through which single, uniform policy instruments

reduce emissions. However, the formulas also provide insights about the more complicated policy config-

urations that will be explored with the numerical model. A non-uniform input tax that varies by some

combination of region, parcel or crop will improve on the uniform input tax if the input tax rates can be

26For any of the untaxed crops the first-order condition is πijk−Lk
ij = λij , so λij represents the profit obtained from shifting

a unit of land into the production of an untaxed crop.
27See Robertson and Vitousek (2009) or Cavigelli et al. (2012) for discussions of the management options.
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set in a manner that accounts for heterogeneity in marginal emissions rates across these groups. Likewise,

pairing an input tax with acreage taxes will lower primary costs by more fully utilizing the land allocation

effect. Input rate restrictions could be improved by extending the restrictions to additional crops. This

would spread costs to additional parcels and more fully exploit the input effect.

4.3 Gross Cost Decompositions

To assess gross costs, I allow that labor tax to be positive, fix the government payment to the consumer at

a positive value, and require compensation to landowners for lost profit. In what follows, I illustrate the

additional cost components due to fiscal interactions for the emissions tax, then discuss how these components

would be different for the remaining policies. The gross costs of a marginal change in the emissions tax are:

− 1

λI

dV

dtE
= −tE dE

dtE︸ ︷︷ ︸
dWP

+ (1 +M) tL

(
− dL

dtE

)
︸ ︷︷ ︸

dWTI

−M
(
E + tE

dE

dtE

)
︸ ︷︷ ︸

dWRR

−M

(∑
k

Yk
dPk
dtE

− E

)
︸ ︷︷ ︸

dWC

(12)

where M =
−tL ∂L

∂tL

L+tL ∂L
∂tL

is the typically defined partial equilibrium marginal cost of funds minus one. It is

deadweight loss from an increase in the labor tax over revenue generated due by the tax increase. The first

term, dWP are the primary costs of the policy, which can be further decomposed as in the previous section.

The second term, dWTI , is the tax interaction effect. This effect equals the marginal cost of public funds

(1 +M) times the change in labor supply induced by the environmental policy. The environmental policies

raise the price of crops which reduces the real wage. This contraction in labor supply generates an efficiency

loss due to the prexisting labor tax. This contraction also reduces tax revenue, which must be replaced

at cost M . The third term, dWRR, is the revenue recycling effect. It is equal to M times the marginal

revenue generated by the environmental tax. Each dollar of revenue generated from the environmental tax

can replace revenue generated by the labor tax, for a cost savings equal to M .

These three terms are the standard effects emphasized in the literature on environmental taxation

with preexisting distortionary taxation. Most studies find that the tax interaction effect easily dominates the

revenue recycling effect (Parry, 1995; Goulder et al., 1999). But, the presence of a fixed factor of production,

such as land, can cause the revenue recycling effect to dominate the tax interaction effect, and potentially

both the primary costs and tax interaction effect (Bento and Jacobsen, 2007). In the presence of a fixed

factor, the costs of raising revenue can be lowered as the burden of taxation is shifted away from labor

towards the fixed factor. The logic follows from the theory of optimal taxation. In the model, land is a fixed

factor of production that generates profits. Since taxing profits is not distortionary, an optimal tax system

would fully tax profits. The environmental taxes serve as surrogate profit taxes if profits are not fully taxed.
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However, the environmental taxes are distortionary so the cost savings generated by shifting the tax burden

from labor to land depends on the marginal excess burden of the environmental tax. This logic also suggests

that the marginal excess burden of the environmental taxes will be lowest for instruments that most directly

charge land.

The fourth term, dWC , is the compensation effect. It is equal to the marginal change in profit times

M . Profit can increase or decrease in response to the environmental policy. If compensation is required, the

marginal change in profit is replaced with, or can replace, revenue raised at a net cost equal to M .

The gross costs of the other tax policies can be decomposed with analogous formulas. The gross cost of

the input rate restriction differs from equation (A.10). First, the revenue recycling effect disappears because

the policy does not generate revenue. Second, the compensation effect no longer includes the quantity of the

good being regulated and will be equal to −M
∑
k Yk

dPk
dn̄h

, thus causing the compensation effect to increase.

Unlike taxes, which impact profit by raising the cost of all units of a factor of production, marginal and

residual, the input rate restrictions only affect profit due to marginal changes in inputs.

5 Numerical Framework

The numerical model is a national-scale integrated biophysical and general equilibrium framework that

accounts for agricultural production decisions at the county level. The model takes broadly the same structure

as the analytical model, with five major additions. First, to account for exports of US crops the numerical

model includes two “countries” with open economies, the US and the rest-of-world (ROW). ROW is an

aggregate of all countries excluding the US. Both countries are endowed with labor and land, which are

immobile across countries. The countries trade crops and intermediate goods. Since the focus is on the

implications of US policies, the model is more detailed for the US than the ROW. Second, land parcels are

allowed to vary by irrigation status, an important determinant of yields and emissions rates. Third, a number

intermediate sectors are added to better represent the relationship between farm-level decisions that affect

crop supply and national-level outcomes. Fourth, additional parameters are included in the agricultural profit

equations to rationalize observed N application rates with the biophysical yield data. Finally, profits in the

agricultural sector are taxed at the same rate as labor, tL, because both reflect income to the representative

consumer.

The functional forms and assumptions for U , yijk, eijk, Lij and intermediate production are laid

out in the following sections. When necessary, the superscript r ∈ {US,ROW} is used to denote goods or

activities in a specific country. For clarity of notation, the superscript is dropped from the functional forms

described below. Unless otherwise noted, arguments and parameters of each function are country specific.
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5.1 US Demand

In the numerical model, the representative consumer in the US demands a composite consumption good F

produced primarily with crops, which will be referred to as food, rather than consuming each of the crops

directly. Following Parry (1999), utility is a set of nested constant-elasticity-of-substitution (CES) functions:

U =
(
αUCF

ρU + (1− αU )
(
L̄− L

)ρU ) 1
ρU

CF =
(
αCF (F − F̄ )ρCF + (1− αCF )CρCF

) 1
ρCF (13)

where ρU and ρCF are functions of the chosen elasticities of substitution, σU and σCF , according to ρ = σ−1
σ ,

the α terms are calibrated share parameters. The upper nest accounts for the tradeoff between aggregate

consumption CF while the lower nest accounts for the tradeoff between consumption of food and all other

consumption. A key feature of this framework is the inclusion of F̄ in the lower nest. This is a calibrated

parameter that allows the expenditure elasticities for F and C to differ and, if F̄ is positive, for C to be a

closer substitute for leisure than food.28 It will also serve to weaken the tax interaction effect (Parry, 1995).

5.2 US Agricultural Production

The model captures differences in crop yields and emissions rates at county level. Accounting for hetero-

geneity in yields and emissions rates requires solving for county-crop specific N application rates. As a

consequence, simplifications are made in other areas of the model to maintain feasibility. Most significantly,

mitigation policies are assumed to only impact the type of crops grown on irrigated land but not the fraction

of irrigated land in a county or intensity of irrigation. It is then possible to treat irrigated land and rainfed

land in a given county as two separate parcels. For example, Jefferson county Nebraska is treated as two

parcels, one with 0.056 million hectares of rainfed cropland and the other with 0.035 million hectares of

irrigated cropland. In the numerical model, I represents groups of states and J represents county-irrigation

pairs. Since not all crops are grown in each region, the crop choice set is indexed by region, Ki.

Yield and Emissions Functions

Yields take the form yijk = ŷijk + γijkn
βijk
ijk with all parameters, ŷ, γ and β, positive. This form was chosen

so that the calibrated functions could reflect both the marginal yield information from the biophysical model

and observed yields. Emissions per unit land, eijk, are increasing and weakly convex quadratic functions of

28If CF (·) took the standard CES form, the expenditure elasticities for F and C would both be 1. Therefore any change in
CF would lead to proportional increases in both goods and the demand elasticities for F and C with respect to the wage rate
would be the same.
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N application rates with crop-parcel specific parameters.

Shadow Costs of N Applications

Similar to Mérel et al. (2014), to ensure that baseline N application rates and the biophysical yield data are

consistent with the economic model in equation (6), additional parameters are added to the profit equation

to reflect the “shadow costs” of N applications. These shadow costs, νijk, drive differences in N application

rates across crops and regions that are unrelated to marginal yields by acting as implicit taxes or subsidies

on N applications. Therefore, the implicit price of N faced by a given crop-parcel combination is PN +νijk.29

Land Allocation

The unobservable management costs in equation (6) take the form:

Lij (Aij1, . . . , AijK) = Āij
1

αAi

(
lij +

∑
k

ξijkSijk +
∑
k

Sijk logSijk

)
(14)

where Sijk is the share of parcel ij allocated to crop k and αAi , ξijk and lij are calibrated parameters. Given

this specification of management costs, the optimal land allocations in each parcel take simple multinomial

logit forms (Carpentier and Letort, 2013):

Aijl (πij1, . . . , πijK) = Āij
exp

(
αAi πijl − ξijl

)∑
k exp

(
αAi πijk − ξijk

) . (15)

The multinomial logit is a limited formulation because an increase in returns for any crop causes the same

percentage reduction in all other crops. This limitation is partially justified due to the computational benefits

of a closed form solution for the land allocation.

5.3 ROW Demand

The representative consumer in the ROW derives utility from consumption goods C and F and land held

out of agricultural production:

U = (αUC
ρU + (1− αU )F ρU )

1
ρU +

AU
1+ 1

ηAU

γAU (1 + ηAU )
(16)

29The parameters νijk are allowed to vary by crop and state. To add shadow costs to the full equilibrium model without
adding price distortions, the shadow costs are assumed to be fully captured in the price of N, which is allowed to vary by state
and crop. The linear technology parameters of N production are set to reflect these price differences.
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where AU =
(
Ā−AAG

)
and AAG is the amount of land available for agriculture. Allowing land to enter

the additively separable component of utility is a simple means for endogenizing the supply of land for

agriculture. ROW income is the sum of returns to the labor and land endowments.

5.4 Final and Intermediate Production

Intermediate goods and the final consumption goods, F and C, are produced by profit maximizing firms

with CES technology of the form:

Xr
s = γrs

(∑
q

αrsqX
r
sq
ρrs

) 1
ρrs

(17)

where Xr
s is the production of good s and Xr

sq is quantity of good q used in the production of good s in

country r, and ρrs =
σrsq−1

σrsq
. σrsq, γ

r
s and αrsq are calibrated parameters. s indexes the set of all intermediate

and final goods, while q indexes the set of all primary factors, intermediate goods and final goods. Since the

technology exhibits constant returns to scale, profit in all intermediate industries will be zero. Table A.1

displays the specific structure of intermediate production.

N is produced from labor in the US with a linear production function: N = γNL. Therefore PN = PL
γN

.

5.5 Market Clearing and Trade

Aggregate demand must equal aggregate supply at the country level for each domestic good, and at the

world level for each traded good.

5.6 Solution Method

Given a set of policy variables, equilibrium is computed by searching for a vector of activity levels, constraint

multipliers and prices that solve the first-order conditions for optimal consumption and production, market

clearing conditions, and zero-profit conditions.30

The model is solved as a complementarity problem to account for potential constraints on N ap-

plication rates due to input rate restrictions. The application rate for each crop-parcel must satisfy the

complementarity condition:

−
(
Pk

∂yijk
∂nijk

− (PN + τN )− τE
∂eijk
∂nijk

)
≤ 0 ⊥ nijk ≤ n̄ijk (18)

30Activity levels are final consumption quantities, production quantities and inputs used for all final and intermediate goods
and N application rates. Given prices and input levels, there is a closed form solution for the land allocation, so these variables do
not enter the equilibrium search. Constraint multipliers include the multiplier associated with each country’s income constraint
and the multipliers associated with each production constraint. Prices are the domestic prices of all non-traded goods and
the world prices of traded goods. The zero-profit conditions apply to all final and intermediate goods, excluding crops, and
establish the prices of these goods.
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where n̄ijk is the maximum input rate for each crop-parcel and ⊥ indicates that if either condition is non-

binding, the other condition must be satisfied with equality.31

Formally, denote Ω as the vector of choice variables in the equilibrium search and Φ as the vector of

environmental policy variables. Let 0 ≤ EQM(Ω; Φ) be the vector of equilibrium conditions associated and

Ω̄ be the upper bounds associated with each choice variable. Given policy values, equilibrium is solved by

searching for Ω that satisfies:

0 ≤ EQM(Ω; Φ) ⊥ Ω ≤ Ω̄. (19)

Optimal Policy Problem

An MPEC formulation is used to compute the optimal policy variables that achieve a targeted level of

emissions, Ē. Denote equilibrium emissions as E(Ω; Φ) and welfare of country r as Ur(Ω; Φ) and let θr be

utility weights. The optimal policy variables are those that maximize the weighted sum of each country’s

welfare subject to the emissions constraint, while all other variables satisfy the equilibrium conditions:

max
Ω,Φ

∑
r

θrUr(Ω; Φ)

subject to:

0 ≤ EQM(Ω; Φ) ⊥ Ω ≤ Ω̄

E(Ω; Φ) ≤ Ē. (20)

The multiplier associated with the emissions constraint represents the utility cost of a marginal change in

emissions.

6 Data and Calibration

6.1 Baseline Data

Production and Consumption

Table A.1 summarizes the baseline production and consumption data set. The US portion of this data set

was mainly derived from the 2007 Bureau of Economic Analysis NIPA Input-Output tables (BEA, 2015)

and the USDA’s Foreign Agricultural Service Production, Supply and Distribution (PSD) data (FAS, 2015).

Data for the ROW was derived largely from World Bank (2015) and FAO (2015) statistics. The first column

31Equation (18) is a compact representation of the Karush-Kuhn-Tucker conditions for maximization with an inequality
constraint on the input rate.
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in each panel reports baseline values of the endowments and crops supplied by each country.32 The value of

each crop is calculated using baseline yields, land allocation and crop prices described below. The remaining

columns report the value of goods consumed in the production of intermediate goods and by representative

consumers. The final column in the ROW panel reports the value of imports to ROW from the US.

In the US, the intermediate goods are meant to broadly reflect the flow of agricultural products from

production to end use. The intermediate goods included are hay (HAY), processed soybeans (SB), ethanol

(ETOH), meat (MEAT) food (F) and an aggregate consumption good (C). These categories reflect the

primary intermediate and final end uses for crops based on USDA data. In the ROW, only broad aggregate

goods are considered, including the aggregates of imported US agricultural products (AG, US) and ROW

agricultural products (AG, ROW) and all agricultural products (AG). This simple structure allows for the

ROW supply and demand of agricultural products, and in turn ROW demand for US crops, to respond to

US environmental policies. See appendix section A.2.1 for details regarding the construction of the baseline

production and consumption data set.

Agriculture

The agricultural model is calibrated to a detailed agricultural data set constructed primarily from USDA

sources including the National Agricultural Statistics Service’s (NASS) annual surveys and Census of Agricul-

ture (NASS, 2014b) and the Economic Research Service’s (ERS) Agricultural Resource Management Survey

(ARMS) data (ERS, 2014b) and Commodity Costs and Returns (ERS, 2014c). Since the model captures

long run equilibrium adjustments, the agricultural data used in the model is the average of the available

annual data reported by USDA sources for the years 2003 to 2012.

The model represents the production of seven crops: corn, soybean, wheat, cotton, sorghum, legume

hay and grass hay.33 These seven crops comprise the majority of US crop production, accounting for roughly

90% of land allocated to field crops, and 87% of the value of crop production in 2002, 2007 and 2012 (NASS,

2014b). Only the most significant crop variety in terms of land shares and quantities is modeled. Therefore,

cotton represents upland cotton and wheat represents winter wheat.

Production decisions are modeled in 1,968 counties across 35 states (Table A.2). Counties are included

based on the quantity of land allocated to the seven modeled crops. The included counties, mapped in the

top panel of Figure A.1 by region, account for more than 95% of total land allocated to the seven modeled

crops in each year between 2002 and 2012. Irrigated agriculture is modeled when a notable (> 5%) share

of total land in a county is irrigated. A map of irrigated and rainfed counties is provided in the lower

32Since A in the US is used solely by the agricultural sector it is not reported in this table.
33Corn and sorghum are harvested for grain. Legume hay is represented by alfalfa.
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panel of Figure A.1. In total, 2,572 county-irrigation combinations are included in the model, with 1,329

counties containing only rainfed cropland, 604 counties containing both rainfed and irrigated cropland and

35 counties containing only irrigated cropland. Crop shares by county and irrigation status were calculated

from harvested acreage data from the Census of Agriculture reported by NASS (2014b). The average of the

2007 and 2012 census data was used to calculate these shares. See section A.2.2 for additional information

about the selection of counties and the construction of crop shares.

The N application rate decisions are not modeled for the legume crops, soybeans and alfalfa, that

require little or no mineral N applications. N application rates are fixed at observed baseline levels for

soybeans and assumed to be zero for alfalfa.34 In total, 10,444 crop-county combinations are included in the

model, with the N application rate decision modeled in 7,078 crop-county combinations.

County-level yields for rainfed and irrigated crop production, state-level N fertilizer application rates,

and productions costs for farm production regions are also collected for use in calibration from the Census

of Agriculture, ARMS and Commodity Costs and Returns data, respectively.

6.2 Parameters

US Utility

The US utility functions, equation (13), are calibrated to match key demand elasticities and replicate baseline

quantities. First, σU and the ratio of the value of leisure to the total value of consumption are set so that the

compensated labor supply elasticity is 0.4 and the uncompensated elasticity of labor supply is 0.15. These

values are consistent with similar studies (Parry, 1999; Goulder et al., 1999; Bovenberg et al., 2008), although

a recent review suggests that aggregate labor supply elasticities may have fallen in recent years (McClelland

and Mok, 2012). Then F̄ is chosen so that the expenditure elasticity for F is 0.4 and σCF is chosen so that

the uncompensated demand elasticity for F is -0.35. These values are consistent both with previous studies

focusing on agricultural policies (Parry, 1999) and empirical estimates (Muhammad et al., 2011).35

The baseline labor tax is 0.4, which is roughly the sum of federal and state income, payroll and

consumption taxes and is consistent with other studies on the interactions between environmental policies

and preexisting taxation (Goulder et al., 1999; Parry, 1999). Given baseline values, the marginal excess

burden of the labor tax is just under 0.3.

34According to extension sources, applying N to alfalfa is only recommended in special circumstances, such as during estab-
lishment or for cold soils.

35Parry (1999) uses -0.4 for the uncompensated demand elasticity for agricultural products, and 0.4 for the income elasticity
of agricultural products. (Muhammad et al., 2011) suggest values closer to 0.35 and -0.3 for the income and uncompensated
demand elasticities for food, respectively.
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US Intermediate Production

Grass hay and alfalfa are assumed to close substitutes in the production of the hay aggregate (σ = 1.5). The

elasticities of substitution for ethanol production and soybean processing are set close to zero (σ = 0.05), so

that labor is nearly a perfect compliment to the crop input in both sectors. The elasticities of substitution

for C, MEAT and F production are set to 0.5.

Yield and Emissions Functions

The yield and emissions function parameters are calibrated to output of the Daycent biogeochemical model (Par-

ton et al., 1998). Daycent is a widely used and highly cited process model that simulates carbon, nitrogen,

phosphorous and sulfur dynamics for agroecosystems on a daily timestep based on site specific characteristics

for soil and weather.36 Critically, Daycent is able to simulate grain and straw yields and N2O emissions due

to N available from, among other sources, synthetic fertilizers, crop residues and asymbiotic fixation, for

each crop and management practice represented in the model.

The procedures used to generate yield and emissions response functions from Daycent are laid out in

Ogle et al. (2015) and summarized here. Daycent simulations were conducted for a subset of US counties

based on county-level data for soil attributes and daily weather. For each county, 1000 simulations were con-

ducted for random combinations of management options. Linear mixed effects models, with logged dependent

variables, were used to estimate the relationship between yields and emissions and, site characteristics and

crop and management choices from the Daycent model outputs. The explanatory variables in the regression

models include N applied and N applied squared, organic amendments and organic amendments squared, the

crop residue removal rate, dummy variables for crop, tillage and irrigation status and site specific average

temperature, a soil moisture index and soil sand fraction as well as first order interactions between all vari-

ables. Separate models were estimated for broad regions defined in Table A.2. Using the estimated models,

yield and emissions response functions are obtained for each county and crop combination using state-level

average temperature and county-level data for the moisture index.37 These response functions are used to

generate the data necessary for calibration of the economic model.

The parameters of the variable portion of the yield functions, γijk and βijk, are calibrated based on

the relative marginal yields of the estimated response functions at observed regional N application rates

and 5% reductions from these rates.38 Given these parameters, ŷ is set to match observed county-level

36For example, Daycent simulations underlie the EPA’s GHG Inventory (EPA, 2014) estimates of GHG emissions from
agricultural soils.

37All functions are evaluated with zero organic amendments, 20% residue removal, reduced tillage and a soil sand content of
0.33.

38Calibrating to marginal yields at two points allows the yield functions to be consistent with the curvature of the response
functions.
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yields. Prior to calibration, outlier marginal yield estimates from the response functions are dropped and all

marginal yield estimates are scaled so that the average corn yield elasticity with respect to N applications is

0.17. This procedure sets the overall responsiveness of yields to N applications while preserving the relative

differences in marginal yields across both parcels and crops. It also allows for the implications of different

yield elasticities to be explored. Additional details are provided in section A.3.

The parameters of the emissions functions, eijk, are chosen to match the emissions response functions

over the range of N application rates 25% above and below baseline N application rates, while ensuring the

function is increasing and weakly convex.39

Shadow Costs of N applications

Given the calibrated yield functions and baseline prices, the shadow costs of N applications, νijk, are set so

that the model’s predicted baseline average N rates match observed baseline N rates for each crop and state.

Note, while the baseline dataset only includes crop-state observations of N application rates, N rates will

differ by county in the baseline equilibrium. For a given crop, county-level differences in application rates

within a state are driven completely by differences in marginal yields. Baseline N application rates by crop

and region are reported in Table A.4.

Land Management Costs

Parameters αAi in the land management cost function, equation (14),are assumed to be uniform and are

calibrated so that in the baseline the corn area elasticity with respect to the corn price is 0.35, which is

between the short and long run estimates of (Hendricks et al., 2014) and is consistent with more dated

evidence (Lin et al., 2000). The remaining own price elasticities for the remaining crops lie between 0.16

(wheat) and 0.38 (sorghum). Given values of αAi , parameters ξijk are set so that predicted land shares

match observed land shares. Finally, lij are set so that total management costs for each parcel are zero at

the baseline land allocation.

ROW Utility

σROWU is calibrated so the uncompensated elasticity of demand for F is -0.45. This value is chosen so that

the elasticity of demand for F is slightly more elastic in the ROW than the US, consistent with the findings

of Muhammad et al. (2011).40

39More formally, the emissions response functions are evaluated at 1 kilogram N per hectare increments over the required
range. Then, using the generated dataset the parameters of eijk are solved for with constrained least squares.

40A standard CES utility function is used for the ROW because evidence suggests that the income elasticity of food con-
sumption is closer to 1 outside the US (Muhammad et al., 2011).
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ROW Production

The elasticity of land supply is calibrated to 0.1, which is consistent with empirical estimates from Barr

et al. (2011). A low elasticity value is chosen here because ROW agricultural production represents all

agricultural activities, so the extensive margin will not account for shifts between agricultural uses, such as

between cropland and pasture. The elasticity of substitution between A and L in the production of ROW

agricultural products, σAGROW , is set to 0.05 so that the elasticity of output per unit land with respect to

the price of agricultural products is small.

The elasticity of substitution for the ROW agricultural aggregate and the elasticity of substitution for

US agricultural products are calibrated so the aggregate ROW demand for US crops is -0.4 and the ROW

demand elasticity for corn imports is -0.6. The remaining elasticities of demand for crop imports range from

-0.53 to -0.66. These elasticities of export demand are roughly in line with Gardiner and Dixit (1987).

The elasticity of substitution for the ROW agricultural consumption good is set so that labor is nearly

a perfect compliment to agricultural products (σ = 0.05).

6.3 Baseline Equilibrium

The baseline allocation of cropland, by region, is displayed in A.3. In total, 100.4 million hectares of land

are allocated to the seven crops. Corn and soybeans, at 34.7 and 28.1 million hectares respectively, are the

two dominant crops in terms of land area. Production of these crops primarily takes place in the Corn Belt,

Lake States and Plains regions, which make up the Midwestern portion of the US. Wheat, grass hay and

alfalfa, in that order, are the next three most important crops, although none of these crops is grown on

more than 13.5 million hectares. Wheat production takes place predominantly to the west of the Corn Belt

in the Plains, Mountains and Southwest regions. Grass hay and alfalfa are distributed more uniformly across

regions. Sorghum and cotton each make up a small share of total land at the national scale, but can be

relevant in a given region. For example, cotton is the third most important crop in the Southwest in terms

of area.

Average N application rates differ widely by crop owing to differences in the marginal productivity

of N. National average N application rates for each crop are reported in the bottom row of Table A.4.

Per hectare, grass hay and corn are the biggest users of N, with each averaging over 150 kg/ha. Average N

application rates for cotton, hay and sorghum are roughly half of those for grass hay and wheat. Applications

for the legume crops, soybeans and alfalfa, are small because these crops are able to fix the majority of

required N from the atmosphere, additions of N fertilizer have little effect on yield. There is also notable

heterogeneity in application rates across regions for each crop. This regional heterogeneity is driven by
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differences in marginal productivity and typical production practices and farm types (e.g. dairy versus

commodity farms). N applications to cropland total 8.7 million tons (Table A.5), which is consistent with

ERS (2014a) and FAO (2015) statistics.41 The vast majority, about 60%, of total N is applied to corn, due

to corn’s dominant land share and high average N application rate. For similar reasons, grass hay receives

the second largest quantity of N, about 22% of total N applied.

Baseline N2O emissions total 159 TgCO2e (Table A.7), which is broadly consistent with EPA (2014).42

N2O emissions and N2O emissions rates (Table A.6) are generally associated with crops and regions with the

largest N applications. However, the large N2O emissions attributable to soybean production illustrates the

imperfect correlation between N applications and N2O emissions. Soybeans are the second largest contributor

of N2O after corn, but the second smallest user of N. As a legume, soybeans require little N, if any, N to be

applied because the crop fixes atmospheric N. But the N fixed by the crop is then available for conversion

to N2O. This suggests that an N tax will not be a perfect substitute for an emissions tax.

7 Results

7.1 County-level Abatement Costs

Prior to analyzing policies, I calculate partial equilibrium marginal abatement cost curves at the county-

level.43 This analysis allows me to examine how the potential to mitigate N2O varies across crops, counties

and regions. To highlight the within- and across-region heterogeneity in county-level abatement potential I

plot the distribution of marginal abatement costs, per hectare, for each region in Figure 1.

In each panel, the thick line illustrates the marginal abatement costs of the median county. To

illustrate within-region heterogeneity in abatement costs, the shaded area represents the marginal abatement

costs of the central 85% of counties and the thin lines represents the central 50% of counties. The areas of

decreasing color intensity represent 5% quantiles on either side of the median. For the median county in the

Corn Belt (upper left panel), a 0.1 tCO2e/ha reduction in N2O can be achieved for under 15 $/tCO2e, and

50% of counties can achieve a reduction of this magnitude for between 10 and 19 $/tCO2e.

Figure 2 presents the distribution of county-level marginal abatement costs in the Corn Belt under

different assumptions in order to illustrate which factors impact county-level marginal abatement costs.

41According to the FAO (2015) between 2007 and 2012, total N use in the US was between 11 and 12 million metric tons.
However, this statistic includes uses of N in addition to cropland agriculture. The ERS (2014a) reports that approximately 6.5
million tons of N are applied to corn, soybeans, wheat and cotton, but do not breakdown total N use according to other crops.
Baseline N use by these four crops is 6.6 million tons in the model.

42The model predicts lower N2O emissions than reported by EPA (2014), primarily because it does not account for the
production of minor crops or manure applications.

43To calculate the county-level marginal abatement costs, I fix input and crop prices then solve the agricultural problem
(equation (6)) for each county at increments of the emissions tax ranging from 0 to 100 $/tCO2e. Plotting the change in
emissions, relative to no emissions tax, versus the emissions tax yields the county-level abatement cost curve.

29



Similar figures can be created, and similar conclusions drawn, for each of the other regions. The first panel

on the left displays the distribution of marginal abatement costs under baseline model assumptions (i.e. this

panel replicates the upper left most panel in Figure 1). The second panel displays county level marginal

abatement costs if the land allocation is fixed at baseline values, thus preventing any mitigation from the

land allocation channel. Removing the land allocation channel causes marginal abatement costs to rise across

the entire distribution, but only slightly. For a 0.1 tCO2e/ha reduction, median abatement costs increase by

under 1 $/tCO2e. The small increase in abatement costs reflects that the vast majority of mitigation occurs

as a result of changes in input use, not changes in the land allocation.

Mitigation from the land allocation channel is limited for two reasons. First, since all crops release

N2O, any reduction in emissions due to shifts away from a high emitting crop will be eroded, to some extent,

by increased emissions from lower emitting crops. Second, in a given region, lower emitting crops tend to

make up smaller shares of the land base (compare Tables A.3 and A.7). Small land shares in the baseline

reflect lower returns and historical cropping patterns, which limit the shifting of land into low share crops.

This is particularly true in the Corn Belt, where wheat and alfalfa are the lowest emitting crops but each

makes up only a tiny fraction of the land allocation in the baseline.

Due to the limited land allocation effect, marginal abatement costs depend almost totally on the cost

of achieving emissions reductions by cutting N. The costs of reducing N2O with cuts in N depend primarily

on the relative slopes of the yield and emissions functions, and therefore vary considerably by crop (Table

A.8).44 Across all regions, cuts in N to corn and grass hay reduce emissions far more cheaply than for the

other crops, particularly wheat and the legume crops, so counties and regions with larger shares of corn

and grass hay will tend to exhibit lower marginal abatement costs.45 Regional and county-level differences

in the slopes of the yield and emissions functions, which reflect the variation in climate and biophysical

characteristics capture by the Daycent simulations, also have a substantial impact on the costs of mitigation

through cuts in N. Therefore, heterogeneity in county-level abatement costs will depend jointly on the slopes

of the yield and emissions function and the land allocation.

The third and fourth panels in Figure 2 illustrate how heterogeneity in land allocation and yield

and emissions functions each contribute to the distribution of marginal abatement costs. The third panel

displays the distribution of abatement costs when yield and emissions functions for each crop are set to be

uniform across counties. The remaining heterogeneity is attributable solely to differences in the baseline land

allocation. The reduction in heterogeneity is substantial, a 0.1 tCO2e/ha, 50% of counties have abatement

44For any county ij, the marginal abatement costs of cuts in N to crop k are
−(Pky′

k−PN )
e′
k

. Thus, costs will be higher when

marginal yields are larger and marginal emissions are smaller.
45Since the N application rate choice is not modeled for legume crops, there is no mitigation potential through cuts in N for

alfalfa and soybeans.
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costs between 10 and 15 $/tCO2e. The rightmost panel displays the distribution of abatement costs when

the the land allocation for each county is set to the regional average, therefore isolating the contribution of

heterogeneity due to yield and emissions functions, 50% of counties have abatement costs between 9 and

13 $/tCO2e. These final two panels show that the land allocation is a bigger determinant of heterogeneity

in marginal abatement costs than heterogeneity in yield and emissions functions, although both factors are

important.

Moving back to Figure 1, comparing the abatement costs of the median county in each region illus-

trates the regional heterogeneity in abatement potential. Flatter curves imply cheaper emissions reductions.

Abatement cost curves are shallowest for the Corn Belt, Lake States and South Central regions. The me-

dian county in these regions could reduce emissions by 0.1 tCO2e/ha for between less than 20 $/tCO2e. In

contrast, the Northeast, Pacific Northwest and California exhibit much steeper median MAC curves. In the

median county of these regions a 0.1 tCO2e/ha reduction in N2O would cost in excess of 50 $/tCO2e. The

share of land allocated to corn and grass hay relative to wheat is a key driver of the differences in marginal

abatement costs across regions. For example, the Corn Belt and Lake States have large shares of land in

corn and little land in wheat, which leads to relatively low marginal abatement costs. The Plains have a

large share of land in wheat and therefore higher marginal abatement costs.

Within region heterogeneity is most substantial in regions that have larger variation in climate, which

affects the yield and emissions functions, and crop mix across counties. The Corn Belt, Lake States and South

Central regions have the lowest variance in moisture across counties and relatively homogenous marginal

abatement costs. The Pacific Northwest has the highest variance in moisture of any region and extremely

heterogeneous marginal abatement costs. As an example of the impact of crop mix, the Plains exhibits

significant heterogeneity in county level abatement costs, despite having reasonably uniform distribution of

moisture, because the eastern portion of the region contains a number of corn intensive counties, while the

rest of the region is wheat intensive.

The significant heterogeneity in county-level abatement costs across regions suggests that policies that

cannot account for regional differences in abatement costs will be considerably more costly than policies that

can. However, there is also substantial within region heterogeneity in marginal abatement costs suggesting

that regionally differentiated policies are unlikely to be efficient.

7.2 Policies Considered

I use the numerical model to evaluate the welfare implications of a range of price and quantity instruments.

In addition to the emissions tax (tE) the price instruments considered include a uniform N tax (tN), a non-
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uniform N tax that varies by region (tNi), and a combination of the non-uniform N tax and crop-specific

acreage taxes (tNi+ tAk).46 The non-uniform N tax and combination of N taxes and acreage taxes represent

common recommendations for improving the efficiency of regulating an unobservable source of emissions

(Griffin and Bromley, 1982; Helfand and House, 1995; Fullerton and West, 2002). Input rate restrictions

that result in high and low primary costs are also considered. The “high cost” input restriction, n̄H , imposes

a maximum N application rate that is uniform across crops and parcels. The “low cost” input restriction,

n̄L, imposes a uniform percentage reduction in N application rates on all crops and parcels.47 Welfare costs,

measured as negative equivalent variation, are calculated for a series of decreasing total emissions targets,

up to a 10% overall reduction in agricultural N2O.

The alternative policies are each set to minimize the primary costs of achieving an emissions target,

given the available policy instruments. These values are obtained by solving the problem in equation (20).

To recover policy values that minimize primary costs, θr are set to one for each country, tL is set to zero and

all government revenue to be returned to the consumer as a lump sum transfer. These adjustments prevent

the environmental policies from being set for terms of trade or revenue raising purposes or to alleviate a

preexisting distortion. A summary of the policy values used in the analysis is given in Table 1.

7.3 Primary Costs

To begin the comparison of policy instruments, I present the primary costs of emission reductions for each

policy. Comparing primary costs reveal the fundamental differences in how the policies induce mitigation

actions to reduce emissions.

Marginal Primary Costs

The marginal primary costs of each policy instrument are plotted for the entire range of emissions reductions

in Figure 3 and reported for 5% (7.9 TgCO2e) and 10% (15.9 TgCO2e) reductions in N2O in the first row

of each panel in Table 2.48 The proceeding rows report the ratio of marginal cost relative to the emissions

tax, allowing for a direct comparison of the alternative policy to a first-best policy. Modest cuts in N2O are

achievable at reasonable marginal primary costs. Using an emissions tax, a 5% reduction in N2O can be

46Regionally differentiated policies could create incentives for evasion by transporting taxed goods across borders. However,
the tax is differentiated across only 10 broad regions (Figure A.1) so transporting fertilizer from outside a region is unlikely to
be cost effective for a vast majority of parcels.

47For the high cost restriction, the maximum N rates are set as n̄ijk = (1− δ) maxi,j,k(n0
ijk) where δ is the percent reduction

imposed from the maximum of all N rates observed in the baseline (n0
ijk). For the low cost restriction the maximum N rates

are set as n̄ijk = (1− δ)n0
ijk.

48The marginal costs reported in Figure 3 and Table 2 are approximations based on averages over small changes in the
emissions target. As a result, the reported marginal cost will slightly underestimate actual marginal costs. This explains the
small difference between the tax rate and primary costs for the emissions tax.
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achieved at marginal primary costs of 28 $/tCO2e, which is in line with the social cost of carbon used in

US government regulatory impact analyses (Interagency Working Group on Social Cost of Carbon, 2013).49

Marginal costs increase rapidly with the quantity of emissions reductions. For a doubling in emissions

reductions, 5% to 10%, marginal primary costs increase by nearly two and a half times to 72 $/tCO2e.

As suggested by equations (8) to (11), marginal primary costs of each alternative instrument exceed

those of the emissions tax. However, the numerical results illustrate that well designed policies can achieve

emissions reductions at costs that approach those of a first-best policy. To aid interpretation of the primary

cost results, the change in N application rates and the N2O conversion factor, the percent of N applied that

is converted to N in N2O, relative to the emissions tax are reported in Table 2. The relative change in N

application rates indicates how effectively an instrument exploits the input effect, by showing whether a

policy over or under induces reductions in N use. The relative change in the N2O conversion factor indicates

how effectively an instrument makes use of the land allocation effect by reallocating land to reduce the

emissions impact of N applications.

The uniform tax on N is the most costly tax policy considered and is not close to Pigouvian. At a 5%

reduction in emissions, the marginal costs of this instrument are more than 50% greater than the emissions

tax. The additional costs are incurred because the tax on N cannot account for differences in yields and

emissions rates across crops or parcels. As a result, the uniform tax on N induces too drastic a reduction in

N use and too small a reduction in the N2O conversion rate.

Allowing the N tax to vary across regions drastically reduces primary costs. The non-uniform N tax

achieves a 5% reduction at marginal costs only 15% higher than the emissions tax. The non-uniform N tax

is able to exploit regional differences in marginal yield and N2O rates, so the land allocation and input use

effects more closely resemble those of the emissions tax.50 As a result, the reduction in N use is not nearly as

drastic as with the uniform N tax. That the non-uniform tax on N reduces emissions with costs approaching

the emissions tax indicates that the much of the heterogeneity in marginal yield and emission rates occurs

at a fairly broad spatial scale. However, heterogeneity in emissions rates and yields within broader regions

prevent the non-uniform N tax from achieving the first-best outcome. This insight points to a strength of

the integrated biophysical and economic framework. Biophysical information at a fine spatial scale is crucial

for establishing the relative inefficiency of differentiated policies.

Pairing the non-uniform N taxes with crop-specific acreage taxes further lowers marginal costs. When

paired with an N tax the acreage taxes will, to a limited extent, correct the allocation of land by altering

49Estimates of the social cost of carbon ranges from 11 to 90 $/tCO2 for 2010 (Interagency Working Group on Social Cost
of Carbon, 2013). With a discount rate of 3%, the value is roughly 30 $/tCO2.

50The average N tax imposed by the non-uniform tax is lower than the uniform N tax by about 14%. A potential concern
is that the differential in N taxes across borders can be large. Tax rates range from 0.08 to 0.27 $/kg, with an average of 0.18
$/kg for a 5% reduction in emissions (Table 1).
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the relative returns to crops. This brings the change in N use and the N2O conversion ratio closer to that

of the emissions tax. However, adding the acreage taxes causes only a small reduction in marginal primary

costs. For a 5% reduction in emissions, pairing crop-specific acreage taxes with the non-uniform N tax lowers

marginal costs to only 11% higher than the emissions tax. These minimal cost savings indicate that the

majority of emissions reductions come the input effect as opposed to the land allocation effect.

The high and low cost input rate restrictions achieve the 5% reduction at marginal primary costs

of approximately 40 $/tCO2e. The marginal primary costs of the input rate restrictions are substantially

higher than the emissions tax, and in line with the uniform N tax, because neither policy directly accounts

for heterogeneity in marginal emissions or marginal yields.

Marginal primary costs of each of the tax options are increasing, continuous and never cross another

tax instrument. Scaling up the taxes induces marginal changes in abatement actions and leads to a smooth

evolution of marginal costs. For a doubling in emissions reductions, from 5% to 10%, marginal costs of the

tax options increase by slightly under two and a half times.

In contrast, marginal primary costs are discontinuous for the high cost input rate restriction, and

fall at these discontinuities.51 Discontinuities are particularly evident at low emissions reductions targets.

Between emissions reductions of 0 and 1 TgCO2e, the marginal primary cost of the high cost input restriction

rise to over 25 $/tCO2e then drop to below 10 $/tCO2e. By changing the set of farms affected by the

regulation, scaling down the input rate restriction can induce non-marginal changes in costs. Since farm-

level marginal costs of abatement are not perfectly correlated with N rates, the marginal cost of an input

restriction can be discontinuous at points where new farms are affected by the restriction. Marginal costs

fall at the discontinuities because the marginal abatement costs are small for the initial units abated by the

newly regulated farms. The discontinuities are less noticeable at larger reduction targets because the policy

is already binding for the majority of farms. The impact of bringing a small number of new farms under the

regulation will be minor relative to the increased costs to previously regulated farms.52

Total Primary Costs

Total primary costs of each instrument are reported in Table 2. Total primary costs of an emissions tax

are $111 and $517 million for a 5% and 10% reduction in N2O respectively. The ratio of total costs to

the emissions tax for each policy are also reported in Table 2 and are plotted for the range of emissions

reductions in the top panel of Figure 4.

51Marginal primary costs are increasing and continuous for the low cost input restriction because, by construction, this
restriction is binding for all crop-parcel combinations.

52For a 10% reduction, the restriction binds for 67% of crop-parcel combinations (Table 1), which includes essentially all corn
and grass hay acres.
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For each of the taxes and the low cost input rate restriction, the total primary cost ratios are nearly

identical to the marginal cost ratios, because the marginal costs of these policies increase monotonically.

For the same reason, the relative performance of these policies does not change with the level of emissions

reductions (as indicated by the approximately horizontal curves for these policies in Figure 4). In contrast,

the total primary cost ratio of the high cost input restriction falls rapidly as the number of farms for which the

restriction binds increases. As illustrated in Figure 3, the initial reductions due to the high cost restriction

are extremely costly relative to the other policies. This causes total primary costs of the high cost restriction

to increase rapidly at low levels of reductions and then to remain above each other policy, despite eventually

having lower marginal costs than some of the other instruments.

The non-uniform N tax, with and without the acreage taxes, illustrates that policies that regulate

easily observable quantities may reduce N2O emissions with primary costs only slightly higher than a first-

best policy. Similar results have been obtained in the context of pollution from agriculture (for example

Helfand and House (1995) and Garnache et al. (2014)) and passenger vehicle transportation (Fullerton and

Gan, 2005).

7.4 Gross Costs

I focus next on the gross costs of the policies. The goal of this section is to illustrate that fiscal effects can

play an important role in determining the relative ranking of policies for mitigation in the agricultural sector

and to provide the baseline against which the costs due to the compensation requirement can be isolated.

The gross costs of the alternative policies are reported in the first row of each panel in Table 3. The next

three rows in each panel decompose the gross costs according to equation (12). The following three rows

in each panel display the impact of the policies on key drivers of the components of gross cost, the price of

food, which reflects changes in crop prices, and environmental tax revenue.

Gross costs of the alternative policies can be positive or negative. For example, the emissions tax

increases welfare by nearly $460 million for a 5% reduction in N2O, while the uniform N tax reduces welfare by

roughly $185 million. Negative gross costs suggest that implementing the environmental policy will increase

welfare even before the environmental benefits are considered. The differences in gross costs across policies

are driven primarily by the magnitudes of the tax interaction and revenue recycling effects. Consistent with

other studies (Parry, 1999; Goulder et al., 1999; Bento and Jacobsen, 2007), the tax interaction effect for

all policies is substantially larger than primary costs.53 However for the tax policies, the revenue recycling

effect is of the same magnitude, and can be larger than, the tax interaction effect. At a 5% reduction in

53It is worth noting that the magnitude of the tax interaction effect, relative to primary costs, appears particularly amplified
in my setting. This only occurs because the emissions reductions targets I simulate, and the resulting primary costs are small.
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emissions the tax interaction effect for the emissions tax is roughly 4 times larger than primary costs, but

the revenue recycling effect is more than twice as large as the tax interaction effect. It is worth noting again

that the relative magnitude of the revenue recycling effect is not unexpected in a model with an under-taxed

fixed factor of production (Bento and Jacobsen, 2007). Generally, gross costs will be lower for policies that

have smaller impacts on the price of food, due to smaller reductions in N use and crop supply, and that

collect more revenue.

Comparing the top and middle panels of 4 illustrates five key points regarding the differences in policy

rankings based on primary and gross costs. First, the tax on emissions remains the least cost policy option

when gross costs are evaluated. In addition to achieving any emissions reductions with the lowest primary

cost, the emissions tax induces a relatively large revenue recycling effect.

Second, the uniform and non-uniform N taxes are substantially more costly than the emissions tax

when gross costs are considered as opposed to primary costs. Gross costs of the N taxes are at least twice

as large as the costs of the emissions tax, but the primary costs are at most 1.6 times higher. The increased

differences in relative costs of the N taxes are due to elevated tax interaction effects due to bigger impacts

on N use, and dampened revenue recycling effects because the N taxes generate far less tax revenue than

the emissions tax (Table 3).

The environmental tax revenues warrant additional discussion because tax collections are a key de-

terminant of the impact of mitigation policies on agricultural profit. Tax revenue is much larger for the

emissions tax than for the uniform and non-uniform N taxes because the emissions function relevant for

these policies exhibits returns to scale below one.54 This follows a theoretical result by (Stevens, 1988), who

shows that for the same reduction in emissions, the ratio of taxes collected by an input tax to the taxes

collected by an emissions tax will be equal the returns to scale of the emissions function. The intuition

behind this result is that under an emissions tax each unit of N is implicitly taxed according to its marginal

contribution to emissions, but under an N tax all units of N are charged at the same rate. In order to

achieve the same level of emissions reductions as an emissions tax, the tax on N must be equal to the tax on

emissions times the marginal contribution to emissions of the marginal unit of N. If the emissions function

exhibits decreasing returns to scale, the residual units of N will be charged less than they would be under

the emissions tax because the marginal unit of N has a smaller marginal contribution to emissions than any

residual unit of N. Therefore, total tax revenues will be smaller for the N tax than the emissions tax. Unlike

the N taxes alone, tax revenue for the combination of the non-uniform N tax and the acreage taxes is greater

than that of the emissions tax because the relevant emissions function exhibits returns to scale greater than

54The aggregate emissions function relevant for an N tax treats the land allocation as fixed, E(nij) =∑
ijk Aijk(nij)eijk(nijk), and exhibits returns of to scale of approximately 0.4.
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one.55

Third, the combination of non-uniform N tax and acreage taxes reduces emissions with nearly the

same costs as the emissions tax. The gross cost savings from pairing the acreage tax with the N tax accrue

almost solely due to the larger revenue recycling effect. In contrast to N taxes alone, the relative costs of the

tax combination falls dramatically when gross costs are considered. This occurs because the acreage tax is

nearly a perfect replacement for a non-distortionary profit tax and generates a large revenue recycling effect.

Fourth, due to the lack of a direct revenue recycling effect, the input rate restrictions are the most

expensive policies in terms of gross costs.56 Both restrictions reduce emissions at gross costs exceeding

those of the emissions tax by at least 2.75 times, and upwards of 3 times for larger emissions reductions.

When evaluated based on gross costs, the low cost input restriction is no longer comparable to the uniform

N tax. The lack of a direct revenue recycling effect may be another reason, in addition to comparatively

high primary costs and implementation difficulties, to favor price instruments over quantity restrictions for

addressing unobservable sources of emissions.57 A secondary point is that the high cost input restriction

has lower gross costs than the low cost restriction, due to a smaller tax interaction effect. The high cost

restriction has a relatively small impact on the price of food because it regulates only the highest N users.

Fifth, unlike primary costs, gross costs of the alternative policies strongly diverge from those of the

emissions tax for larger reduction targets. For example, the costs of a uniform N tax rise from double to

triple those of the emissions tax between a 5% and 10% reduction in N2O. The divergence in gross costs is

driven by a contraction of the revenue recycling effect, relative to the emissions tax. The tax base for the N

taxes fall faster than the base for the emissions tax, lowering the efficiency benefit of shifting the burden of

revenue raising to the N taxes. A similar pattern emerges for the combination of the non-uniform N tax and

the acreage tax, but it is much more limited because land in agricultural production makes up a portion of

the tax base. The input restrictions raise revenue only indirectly by raising profit to the agricultural sector,

but the contraction of the revenue recycling effect occurs because the efficiency costs associated with raising

profit by a unit increases for larger reductions in emissions.58

The partial equilibrium models, such as (McCarl and Schneider, 2001; Garnache et al., 2014), typi-

cally used to assess agricultural mitigation options must focus solely on primary costs and as a result may

misrepresent, in either direction, the inefficiency of instruments that do not directly regulate emissions. My

55When acreage taxes are considered, the emissions function must treat the land allocation as an input to emissions and
returns to scale are greater than one.

56The revenue recycling effect is negative, but smaller than the tax interaction effect, for the input restrictions because these
instruments only raise revenue through increased tax collections on agricultural profits.

57This result is in line with results from the double-dividend literature that illustrates the dominance of an emissions tax
over emissions quotas with grandfathering (Goulder et al., 1999).

58Note that for a 5% reduction in emissions, the average efficiency lost per dollar of increased profit is 0.03 and 0.04 for the
low and high cost input restrictions respectively. For a 10% reduction, the efficiency losses are 0.07 and 0.06.
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results show that the difference in relative efficiency is larger for the N taxes and input rate restrictions, but

smaller for the N and acreage tax combination.

7.5 Gross Costs with Compensation

The results presented thus far have not accounted for the impact of the policies on profit in the agricultural

sector. I find that agricultural profits actually increase due to each of the mitigation policies (Table 4).

Although the mitigation policies lower profit due to tax payments and mitigation actions undertaken, these

losses are offset by increased revenue due to elevated crop prices (compare the crop supply and inputs rows

to the crop prices row in Table 4). That most of the costs of mitigation are pushed onto consumers through

elevated crop prices is a consequence of food demand being relatively inelastic. The increases in profit,

however, differ dramatically across policies. Profit impacts are largest for policies that have a larger impact

on N use, crop supply and therefore crop prices, and for policies that require smaller tax payments. Profit

increases by only 3.7 $/ha under the emissions tax, due to its large tax burden, but much more under the

uniform tax on N (42 $/ha) and the low cost input restriction (63 $/ha).

To compare policy instruments after accounting for the impacts on profit, I focus on the relative

differences in gross costs with the compensation requirement imposed (displayed in the lower panel of figure

4).59 Imposing the compensation requirement dramatically alters the policy rankings. The tax on emissions

is no longer always the low cost policy. In fact, for a 5% reduction in emissions all policies except the non-

uniform N tax and high cost input restriction are cheaper than the emissions tax. With the compensation

requirement in place, the most cost effective policy is the low cost input restriction, which is 24% less costly

than the emissions tax. This policy causes the largest increase in agricultural profit, which with compensation

in place outweighs its high gross costs. The uniform N taxes and the combination of N and acreage taxes

are slightly more expensive, at 6% and 7% less costly than the emissions tax. That an input restriction

dominates the emissions tax is in line with (Bovenberg et al., 2008), but that input taxes may also dominate

the emissions tax is a new result.

The most costly policy is the high cost input rate restriction (17% higher than the emissions tax),

because the change in profit it induces, while larger than all of the tax policies, is small relative to its gross

costs. That the two input rate restrictions bound the tax policies demonstrates that the design of input

rate restrictions is critical when balancing efficiency and distributional concerns. The advantages in terms

of profit impacts of the input restrictions are not necessarily sufficient to offset the high gross costs of these

59Since profits increase under each policy, imposing compensation lowers the cost of the environmental regulation because
transfers from the agricultural sector replace revenue raised by distortionary taxation. These costs are displayed in the final
rows of each panel in Table 3
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policies.60

The relative dominance of the tax policies and the low cost restriction over the emissions tax deterio-

rates with larger reductions in emissions. This reflects the divergence in gross costs (without compensation)

between these policies and the emissions tax. The larger gross costs can eventually overwhelm the compensa-

tion effect. This trend is particularly notable for the uniform and non-uniform N taxes. Both policies become

more expensive than the emissions tax for reasonable reductions in emissions. The costs of the non-uniform

tax on N surpass those of the emissions tax after approximately 7 TgCO2e of emissions reduced. The uniform

tax on N will only dominate the emissions tax prior to 12.5 TgCO2e reduced. In contrast, the dominance of

the combination of the non-uniform N tax and the acreage taxes drops only slightly because its gross costs

(without compensation) are nearly identical to those of the emissions tax. Over the range of emissions I

study, the low cost mandate always dominates each of the other policies because the profit advantages are

large enough to outweigh the large and growing differences in gross costs. However, the upward slope of the

low cost restriction’s gross cost ratio curve suggest that for some level of emissions reductions the low cost

restriction may no longer be the preferred policy.

The tension between efficiency and distributional concerns complicates general advice regarding policy

instrument choice in the presence of unobservable emissions. With the compensation requirement imposed,

strategies suggested for lowering the costs of reducing an unobservable source of emissions may increase or

decrease gross costs. Moving from the uniform to the non-uniform N tax, or to the combination of non-

uniform N tax and crop acreage taxes, substantially reduces primary costs but also lessens the impact on

crop prices and profits. If compensation is in place, the smaller increase in profit dominates and the uniform

tax on N is the lowest cost of the tax policies. In contrast, moving from the high cost to the low cost input

rate restriction lowers both primary costs and gross costs with compensation.

7.6 Sensitivity Analysis

To test whether the policy instrument rankings are robust to underlying assumptions, I run the same simula-

tions described in the previous section under parameter assumptions that generate low and high cases for the

crop area elasticities, yield elasticities with respect to N application rates, food demand elasticities and the

elasticity of labor supply. Table 5 displays the sensitivity of the costs of emissions reductions to these cases.

The three panels display results for primary costs, gross costs and gross costs with compensation for a 5%

reduction in emissions. The first column of numbers displays the costs of an emissions tax. The remaining

columns report the ratio of costs to the emissions tax for each of the other policies. The top row in each

60It is worth noting that the quantity restrictions analyzed here are relatively inflexible since uniform percent reductions are
imposed from the established baseline rates. Allowing the percent reductions to vary, across regions or crops, will result in more
efficient input restrictions.
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panel reports the costs and cost ratios under the central parameter assumptions. The impacts the alternative

parameter assumptions on other key variables, the price of food, tax revenue from the environmental policies

and agricultural profit are presented in Table 6. Sensitivity results for a 10% reduction are presented in

Tables A.10 and A.11.

The parameter assumptions greatly affect the total primary and gross costs of the policies, but have

little effect on the costs of alternative policies relative to the emissions tax and no effect on policy rankings. As

such, the sections below primarily focus on how the parameter assumptions affect the costs of the emissions

tax, and refer to the other policies when notable changes in relative costs occur.

Crop Area Elasticities

Raising parameters αAi in equation (14) increases the elasticities of crop area with respect to crop returns

(ηA). To generate high and low cases for the area elasticities, αAi are set so that the baseline national area

elasticity of corn is 50% above and below the central value.61 Higher crop area elasticities imply lower primary

costs for the emissions tax because the land allocation effect is easier to exploit (Table 5). The uniform and

non-uniform N taxes, which partially exploit the land allocation effect and input rate restrictions, which do

not exploit the land allocation effect, have relatively higher primary costs than the emissions tax, because

raising the area elasticities causes the land allocation effect to grow in importance relative to the input effect.

Raising the area elasticities increases the gross costs the emissions tax, with or without the compensation

requirement, because the revenue recycling effect is weakened as the emissions supply becomes more elastic.

Yield Elasticities

Sensitivity of results to yield elasticities are explored by calibrating the yield functions so that the national

corn yield elasticity with respect to N rates is 20% above and below the central value, while maintaining

the relative differences in marginal yields across parcels and crops from the biophysical model. Larger

yield elasticities imply higher marginal costs of abatement at the farm level, and larger costs of emissions

reductions for all policies, as cutting N applications leads to bigger drops in crop yields. The increase in cost

can be drastic, a 20% increase in the overall yield elasticity level increases primary costs of the emissions tax

by about 30%. The costs of the alternative policies increase relative to the emissions tax, with the exception

of the high-cost restriction, because over exploiting cuts in N to reduce emissions has bigger impacts on crop

production. More elastic yields cause the high cost restriction to become less costly relative to the emissions

tax, because yields are directly affected for only a subset of parcels and crops. Gross costs of the emissions

61For each set of αA
i , the parameters ξijk and lij are recalculated so that predicted crop shares match observed crop shares

and management costs are zero in the baseline.
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tax fall dramatically with increases in yield elasticities. The larger tax interaction effect, which results from a

larger increase in the food price, is dominated by a larger revenue recycling effect due to the larger emissions

tax required to achieve the same reduction in emissions.

Food Demand Elasticities

Parameters σUSCF and σROWU alter food demand elasticities by changing consumers’ ability to substitute

between food and other consumption. The high and low food demand elasticity cases set these two parameters

so that the uncompensated food demand elasticities are 50% above and below central values. These demand

elasticities partially control the elasticity of crop demand and therefore the impact of mitigation policies on

crop prices. Raising the food demand elasticities lowers primary costs of emissions reductions of all policies

because reductions in crop supply induce smaller increases in the price of crops and food. Raising the food

demand elasticities causes the primary costs of the emissions tax to fall slightly from 111 to 109 $/CO2e

and the primary costs of the remaining policies to fall almost proportionately (Table 5).62 Gross costs of

the emissions tax are almost constant as food demand elasticities are increased because the tax interaction

and revenue recycling effects both fall due to the smaller required tax on emissions. With the compensation

requirement in place however, gross costs of the emissions tax increase with the food demand elasticities

because the rise in crop prices, and thus agricultural profit, is softened.

Labor Supply Elasticities

The compensated and uncompensated labor supply elasticities (denoted ηL) are raised and lowered by 20%

from the central values by recalibrating σU and L̄ in equation (13). Raising the elasticity of labor supply

increases the marginal excess burden of the labor tax, thereby increasing the benefits of using revenue from

the environmental policies to lower the labor tax. As shown in Table 5 the labor supply elasticity has

no impact on primary costs of the emissions tax, but gross costs and gross costs with compensation fall

dramatically. The fall in gross costs with compensation is larger because the larger reduction in the labor

tax is amplified due to the higher marginal excess burden.

8 Conclusion

This paper used analytical and numerical general equilibrium models to explore policy options to reduce

GHG in sectors that are exempt from climate change legislation. I focus on two constraints that preclude a

62Primary costs of the alternative policies actually fall by more than the emissions tax, because the larger than necessary
cuts in N, and therefore crop supply, have a smaller impact on food prices. This differential effect becomes more perceptible at
larger emissions reductions (Table A.10).
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sector from inclusion in climate legislation and prevent first-best policies from being used in these sectors:

unobservable emissions and distributional concerns regarding profit of regulated firms. When jointly con-

sidered these constraints greatly affect the policy instrument choice decision; policy options suggested for

reducing the costs of addressing an unobservable source of emissions can have more prominent impact on

firm profit. If a compensation requirement is imposed to formalize the distributional concerns, input-based

policies can be the least cost policy options even if an emissions tax is available.

My numerical application provides national-scale cost estimates for reducing agricultural N2O using

a variety policy options. Like previous studies on the regulation of unobservable emissions, I find that alter-

native policies based on observable inputs can achieve emissions reductions with primary costs approaching

those of first-best policy. However, I show that when accounting for gross costs, which incorporate costs due

to interactions with the fiscal system, input-based policies tend not to be comparable to an emissions tax,

but this depends on the particular inputs being regulated.

Two limitations of my analysis deserve attention. First, the model includes a limited set of agricul-

tural management practices and considers only N2O emission. As previously mentioned, other management

practices, such as placement, timing and type of N fertilizer applications and tillage and irrigation intensity

will, under certain conditions, affect N2O emission rates (Eagle et al., 2012). Further, changes in agricul-

tural production practices will also affect other sources of emissions and mitigation, notably the uptake

and sequestration of atmospheric carbon into soils (EPA, 2014). Incorporating these additional mitigation

channels would lower the primary costs of mitigation and would widen the gap between an emissions tax

and alternative polices, since each channel would need to be controlled to efficiently regulate emissions.

Second, I focus on a single distributional concern, the policy impact on the aggregate profit of the

agricultural sector. This is one of many distributional issues underlying agri-environmental policy choice.

Perhaps most notably, is the tradeoff between agricultural profit and consumer welfare mediated through

the price of food. My analysis illustrates this tradeoff in broad sense, showing that imposing compensation

requirements justifies policies that induce larger increases in the prices of crops and food. But, to fully

understand the distributional impacts it would be necessary to assess the impacts of elevated food prices on

groups for which the impacts would be severe, such as low income households or food importing countries

and on other outcomes, such as the frequency of civil conflicts (Bellemare, 2015). A further distributional

issue is regional differences in the impact of mitigation policies, particularly for the non-uniform policies.

Although not presented here, my framework provides agricultural results at the county level that could be

used to highlight the regional impacts of agricultural mitigation policies.
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Table 1: Values Policy Instruments

tE tN tNi tNi + tAk n̄H n̄L

7.9 TgCO2e Reduction
tE, ($/tCO2e) 30.10

tN average, ($/kg) 0.21 0.18 0.18
min 0.21 8 8
max 0.21 0.27 0.27

tA average, ($/ha) 32.69
Corn 26.47
W. Wheat 23.21
Soybean 41.02

n̄ average, (kg/ha) 129.50 107.60
Corn 129.50 126.28
W. Wheat 129.50 51.94
Grass Hay 129.50 134.47

Fraction of Parcels Regulated 1.00 1.00 1.00 1.00 0.58 1.00

15.9 TgCO2e Reduction
tE, ($/tCO2e) 75.11

tN average, ($/kg) 0.53 0.45 0.44
min 0.53 0.20 0.20
max 0.53 0.67 0.65

tA average, ($/ha) 81.72
Corn 69.72
W. Wheat 56.61
Soybean 100.73

n̄ average, (kg/ha) 97.93 84.17
Corn 97.93 98.74
W. Wheat 97.93 40.61
Grass Hay 97.93 105.15

Fraction of Parcels Regulated 1.00 1.00 1.00 1.00 0.67 1.00
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Table 2: Primary Costs of Alternative Policies

tE tN tNi tNi + tAk n̄H n̄L

7.9 TgCO2e Reduction
Marginal ($/tCO2e) 28.29 42.82 32.44 31.31 39.52 43.31

ratio to tE 1.00 1.51 1.15 1.11 1.40 1.53
Total (million $) 111.16 173.94 127.70 123.69 202.14 172.88

ratio to tE 1.00 1.56 1.15 1.11 1.82 1.56

∆ N Use (ratio to tE) 1.00 1.56 1.17 1.12 1.03 1.24
% N to N2O−N (ratio to tE) 1.00 1.10 1.03 1.02 1.00 1.04

15.9 TgCO2e Reduction
Marginal ($/tCO2e) 72.40 98.84 83.32 79.15 97.22 107.33

ratio to tE 1.00 1.37 1.15 1.09 1.34 1.48
Total (million $) 517.81 749.64 594.56 570.19 750.19 781.68

ratio to tE 1.00 1.45 1.15 1.10 1.45 1.51

∆ N Use (ratio to tE) 1.00 1.45 1.18 1.12 1.09 1.24
% N to N2O−N (ratio to tE) 1.00 1.20 1.07 1.05 1.03 1.09
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Table 3: Gross Costs of Alternative Policies

tE tN tNi tNi + tAk n̄H n̄L

7.9 TgCO2e Reduction
Gross Costs (million $) -461.47 185.06 135.21 -447.50 404.45 461.17

Primary Cost 111.16 173.94 127.70 123.69 202.14 172.88
Tax Interaction 439.50 507.15 454.42 468.97 399.84 567.47
Revenue Recycling -1012.13 -496.02 -446.91 -1040.16 -197.52 -279.17

Gross Costs (ratio to tE) 1.00 2.40 2.29 1.03 2.88 3.00

∆ PF (%) 0.78 0.89 0.80 0.83 0.83 0.99
∆ Env. Taxes ($/ha) 45.43 14.31 13.25 45.83 0.00 0.00
∆ Labor Tax (%) -0.11 -0.06 -0.05 -0.12 -0.02 -0.03

Gross Costs, w/Comp (million $) -529.89 -562.52 -527.04 -567.08 -439.36 -656.08
ratio to tE 1.00 0.94 1.01 0.93 1.17 0.76

∆ Ag. Profit ($/ha) 3.86 42.07 37.30 6.75 47.45 62.77
Compensation Effect -68.42 -747.58 -662.24 -119.57 -843.81 -1117.25

15.9 TgCO2e Reduction
Gross Costs (million $) -878.12 833.08 657.71 -812.64 1215.56 1373.87

Primary Cost 517.81 749.64 594.56 570.19 750.19 781.68
Tax Interaction 955.42 1088.79 980.99 1016.37 903.63 1165.80
Revenue Recycling -2351.35 -1005.34 -917.84 -2399.20 -438.26 -573.61

Gross Costs (ratio to tE) 1.00 2.95 2.75 1.07 3.38 3.56

∆ PF (%) 1.77 1.99 1.80 1.89 1.91 2.14
∆ Env. Taxes ($/ha) 107.48 27.64 25.94 107.63 0.00 0.00
∆ Labor Tax (%) -0.27 -0.11 -0.10 -0.27 -0.05 -0.06

Gross Costs, w/Comp (million $) -904.80 -855.12 -848.55 -959.48 -700.05 -964.44
ratio to tE 1.00 1.05 1.06 0.94 1.23 0.93

∆ Ag. Profit ($/ha) 1.51 94.96 84.75 8.32 107.57 131.16
Compensation Effect -26.68 -1688.21 -1506.25 -146.83 -1915.61 -2338.31
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Table 4: Impact of Alternative Policies on Agricultural Profit

tE tN tNi tNi + tAk n̄H n̄L

7.9 TgCO2e Reduction
∆ Profit ($/ha) 3.86 42.07 37.30 6.75 47.45 62.77

tax payments -45.43 -14.31 -13.25 -45.83 0.00 0.00
∆ crop supply -20.93 -24.54 -21.85 -22.36 -21.42 -27.27
∆ inputs 19.31 22.12 20.03 20.57 18.71 24.70
∆ crop prices 50.90 58.81 52.37 54.37 50.16 65.34

15.9 TgCO2e Reduction
∆ Profit ($/ha) 1.51 94.96 84.75 8.32 107.57 131.16

tax payments -107.48 -27.64 -25.94 -107.63 0.00 0.00
∆ crop supply -49.96 -58.38 -52.02 -53.41 -53.23 -62.91
∆ inputs 42.03 47.18 43.11 44.65 41.90 50.74
∆ crop prices 116.92 133.79 119.61 124.70 118.90 143.33
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Table 5: Policy Costs Under Alternative Parameter Assumptions (5% Reduction)

tE tN tNi tNi + tAk n̄H n̄L

million $ Ratio to tE

Primary Costs
Central 111.16 1.56 1.15 1.11 1.82 1.56

Low ηA 115.02 1.55 1.13 1.11 1.76 1.49
High ηA 108.33 1.58 1.16 1.11 1.87 1.61

Low ηY 80.13 1.50 1.13 1.10 1.83 1.50
High ηY 144.96 1.63 1.17 1.12 1.76 1.61

Low ηF 113.22 1.58 1.15 1.11 1.82 1.57
High ηF 109.30 1.55 1.15 1.11 1.82 1.55

Low ηL 111.19 1.56 1.15 1.11 1.82 1.56
High ηL 111.13 1.56 1.15 1.11 1.82 1.56

Gross Costs
Central -461.47 2.40 2.29 1.03 2.88 3.00

Low ηA -475.47 2.40 2.30 1.03 2.87 2.99
High ηA -451.99 2.40 2.29 1.03 2.89 3.01

Low ηY -309.80 2.49 2.38 1.05 2.99 3.12
High ηY -634.98 2.34 2.23 1.02 2.79 2.92

Low ηF -465.12 2.42 2.31 1.03 2.90 3.03
High ηF -458.12 2.38 2.28 1.03 2.85 2.97

Low ηL -337.14 2.54 2.40 1.04 3.07 3.18
High ηL -591.32 2.32 2.23 1.02 2.76 2.89

Gross Costs with Compensation
Central -529.89 0.94 1.01 0.93 1.17 0.76

Low ηA -543.34 0.90 0.97 0.93 1.13 0.72
High ηA -516.70 0.97 1.04 0.93 1.20 0.80

Low ηY -436.10 0.94 1.01 0.94 1.17 0.78
High ηY -614.17 0.94 1.00 0.92 1.17 0.75

Low ηF -556.96 0.93 1.00 0.93 1.16 0.76
High ηF -505.43 0.94 1.01 0.93 1.18 0.77

Low ηL -390.38 0.97 1.01 0.93 1.23 0.78
High ηL -675.80 0.92 1.00 0.93 1.13 0.75
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Table 6: Policy Impacts Under Alternative Parameter Assumptions (5% Reduction)

tE tN tNi tNi + tAk n̄H n̄L

∆PF
% Ratio to tE

Central 0.77 1.14 1.03 1.07 1.07 1.27

Low ηA 0.80 1.17 1.05 1.08 1.10 1.29
High ηA 0.75 1.13 1.01 1.07 1.05 1.26

Low ηY 0.62 1.13 1.02 1.07 1.06 1.25
High ηY 0.92 1.17 1.04 1.08 1.07 1.30

Low ηF 0.81 1.15 1.03 1.07 1.07 1.28
High ηF 0.74 1.14 1.03 1.07 1.07 1.27

Low ηL 0.78 1.14 1.03 1.07 1.07 1.27
High ηL 0.77 1.14 1.03 1.07 1.07 1.27

∆ Env. Taxes
$/ha Ratio to tE

Central 45.32 0.32 0.29 1.01 0.00 0.00

Low ηA 46.98 0.31 0.29 1.01 0.00 0.00
High ηA 44.11 0.32 0.29 1.01 0.00 0.00

Low ηY 32.54 0.31 0.29 1.00 0.00 0.00
High ηY 59.28 0.32 0.30 1.02 0.00 0.00

Low ηF 46.20 0.32 0.29 1.01 0.00 0.00
High ηF 44.52 0.32 0.29 1.01 0.00 0.00

Low ηL 45.33 0.32 0.29 1.01 0.00 0.00
High ηL 45.31 0.32 0.29 1.01 0.00 0.00

∆ Ag. Profit
$/ha Ratio to tE

Central 3.68 11.41 10.12 1.79 12.90 17.08

Low ηA 3.64 12.18 10.84 1.81 13.65 18.07
High ηA 3.48 11.50 10.17 1.81 13.12 17.38

Low ηY 6.98 4.96 4.45 1.35 5.41 7.10
High ηY -1.37 -35.61 -31.17 -1.33 -41.43 -55.60

Low ηF 4.99 8.89 7.87 1.62 9.99 13.22
High ηF 2.50 15.94 14.17 2.08 18.11 24.03

Low ηL 3.70 11.37 10.09 1.78 12.85 17.02
High ηL 3.67 11.45 10.16 1.79 12.94 17.14
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Figure 3: Marginal Primary Costs of Alternative Policies

0 2 4 6 8 10 12 14 16
Reduction in N2O (TgCO2e)

0

10

20

30

40

50

60

70

80

90

100
$/
tC

O
2
e

tE

tN

tNi

tNi + tAk

n̄H

n̄L

56



Figure 4: Costs of Alternative Policies
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Notes: Cost ratios are relative to the emissions tax. When the costs of the emissions tax and the alternative policy have different
signs, one plus the percent difference in costs, relative to the absolute value of costs of the emissions tax, is plotted instead.
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Appendix

A.1 Deriving Analytical Results

A.1.1 Derivations of Marginal Primary Cost Formulas

The indirect utility function, excluding disutility from emissions, is:

V (P1 . . . PK ,ΠA, G) = max
C1,...,Ck,C

U(C1, . . . , Ck, C) + λI

[
GC + ΠA + L̄−

∑
k

PkCk − C

]
(A.1)

and from the envelope theorem:

∂V

∂Pk
= −λICk

∂V

∂ΠA
=

∂V

∂GC
= λI . (A.2)

Totally differentiating V with respect to a generic policy Φ yields:1

dV

dΦ
=
∑
k

∂V

∂Pk

dPk
dΦ

+
∂V

∂ΠA

dΠA

dΦ
+

∂V

∂GC

dGC
dΦ

= −λI
∑
k

Ck
dPk
dΦ

+ λI

(
dΠA

dΦ
+
dGC
dΦ

)
− 1

λI

dV

dΦ
=
∑
k

Ck
dPk
dΦ
− dΠA

dΦ
− dGC

dΦ
(A.3)

where the second line substitutes in the values from equation (A.2).

Likewise, the indirect profit function is:

ΠA (P1 . . . PK ,Φ) =
∑
ij

(
max

Aij ,nij

∑
k

πijkAijk − Lij + λij

[
Āij −

∑
k

Aijk

])
(A.4)

and
∂ΠA

∂Φ
=
∑
ijk

Aijk
∂πijk
∂Φ

∂ΠA

∂Pk
=
∑
ij

Aijkyijk = Yk. (A.5)

The total derivative of profit with respect to the policy is therefore:

dΠA

dΦ
=
∑
k

∂ΠA

∂Pk

dPk
dΦ

+
∂ΠA

∂Φ
=
∑
k

Yk
dPk
dΦ

+
∑
ijk

Aijk
∂πijk
∂Φ

. (A.6)

Recognizing that Yk = Ck in equilibrium, and plugging equation (A.6) into equation (A.3) yields:

− 1

λI

dV

dΦ
= −

∑
ijk

Aijk
∂πijk
∂Φ

− dGC
dΦ

(A.7)

which can be used construct the marginal impacts of the policy being analyzed.

1The policy is assumed to only indirectly impact the consumer through prices, but directly impacts landowners.
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Emissions Tax For an emissions tax, dGCdtE
= tE

dE
dtE

+E and
∂πijk
∂tE

= eijk. Plugging these expressions into

equation (A.7) provides:

− 1

λI

dV

dtE
= −tE

dE

dtE
.

Equation (8) is obtained by substituting in the total derivative of emissions with respect to the emissions

tax:
dE

dtE
=
∑
ijk

eijk
dAijk
dtE

+
∑
ijk

Aijke
n
ijk

dnijk
dtE

along with the relationship tE =
Pky

n
ijk−1

enijk
which is the first order conditions for input use.

Uniform Input Tax For a uniform input tax, dGCdtN
= tN

dN
dtN

+N and
∂πijk
∂tN

= nijk, so (A.7) becomes:

− 1

λI

dV

dtN
= −tN

dN

dtN
.

Equation (9) is obtained by substituting in the total derivative of N with respect to the input tax:

dN

dtN
=
∑
ijk

nijk
dAijk
dtN

+
∑
ijk

Aijk
dnijk
dtN

(A.8)

and the first-order conditions for input use tN = Pky
n
ijk − 1.

Acreage Tax In this case, dGC
dtAh

= tAh
dAh
dtAh

+ Ah where Ah =
∑
ij Aijk and

∂πijk
∂tAh

= 1 if k = h and

is zero otherwise. Finally, the first order conditions for the land allocation provides the expression tAh =

πijk − Lkij − λij .

Input Rate Restriction Since the government does not collect revenue GC = 0. For any parcel/crop

combination where the input rate restriction is binding nijk = n̄k and for these parcels
∂πijk
∂n̄k

= Pky
n
ijk − 1.

Substituting into equation (A.7) yields equation (11).

A.1.2 Derivation of Marginal Gross Cost Formula

In this section I derive the marginal gross costs for an emissions tax. As mentioned in the main text, an

analogous procedure could be used to derive the marginal gross costs for the other instruments. Given that

the government payment and agricultural profit, after compensation, are fixed, the indirect utility function

is:

V (P1 . . . PK , tL) = max
C1,...,Ck,C

U(C1, . . . , Ck, C, L̄−L) +λI

[
GC + Π0

A + (1− tL)L−
∑
k

PkCk − C

]
. (A.9)

Total differentiating the indirect utility function and plugging in ∂V
∂Pk

= −λICk and ∂V
∂tL = −λI from

the envelope theorem and rearranging yields:

− 1

λI

dV

dtE
=
∑
k

Ck
dPk
dtE

+ L
dtL

dtE
(A.10)

A.2



The government’s budget constraint is:

GC +
(
Π0
A −ΠA

)
= tEE + tLL. (A.11)

Fixing GC and totally differentiating yields:

dtL

dtE
=
−
(
E + tE dE

dtE + tL dL
dtE + dΠA

dtE

)
L+ tL ∂L

∂tL

(A.12)

Substituting this equation and the definition of M into equation (A.10) and canceling terms yields 12.

A.2 Data

A.2.1 Production and Consumption

General Overview

The value of inputs and output for each intermediate sector and each end use, displayed in Table A.1 are

established using the end-use shares and the share of labor to the total value of production for each good

and by setting the value of labor in aggregate consumption to satisfy the representative consumers’ budget

constraints. The total value of the endowments are then determined based on assumptions regarding the

value of the endowments consumed directly by the representative consumer.

The total value of consumption (CF) in US is set to $9.75 trillion, which is total personal consumption

expenditures from 2007 (BEA, 2015). End-use shares for crops and intermediate goods are based on NIPA

data and the average of 2006 to 2008 PSD data and more detailed USDA data. To simplify the model, end

uses that account for only a small fraction of total production or are economically insignificant are ignored.

The share of labor inputs to the value of output for processed soybeans, meat and food is based on NIPA

data, while the labor share of ethanol production is set to be broadly consistent with values used in the

literature (Plevin and Mueller, 2008; Bento et al., 2015). See section below for more details regarding the

construction of the baseline shares. Finally, the ratio of the value of leisure to the value of consumption is

set based on the chosen compensated and uncompensated labor supply elasticities.

Total value of consumption in the ROW is $29.25 trillion. This value is based on the assumption that

the US accounts for 25% of world GDP, which is broadly consistent with data for the years 2000 to 2010

(World Bank, 2015). The ROW agricultural aggregate is constructed under the assumptions that ROW

agricultural production makes up 4% of the total value of consumption (World Bank, 2015), and that the

factor share of land in agricultural production is 0.22 (ERS, 2014).2 The total value of agricultural products

in ROW is domestic production plus all imports of crops and intermediate agricultural goods. In the ROW,

40% of the land endowment is used for agricultural production. This is based on FAO statistics for the years

2000 to 2010 for the share of land used for agricultural purposes to total land for all countries except the US

(FAO, 2015). The share of labor in food production in ROW is assumed to be the same as in the US.

2These values are broadly consistent for the time period around 2007. However, the share of agricultural production to
ROW GDP is falling over time (World Bank, 2015).
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Baseline Shares

This section describes how input and end-use shares for US intermediate production are constructed from the

2007 Bureau of Economic Analysis NIPA Input-Output tables (BEA, 2015), the USDA’s Foreign Agricultural

Service Production, Supply and Distribution (PSD) data (FAS, 2015) and other USDA sources.3 These shares

are used to construct the baseline production and consumption data presented in Table A.1.

Sector Definitions The definitions of intermediate sectors are as follows. Hay is an aggregate of all

grass hay and alfalfa, and is used solely for the production of meat. Processed soybeans is a combination

of soybeans and labor that represents soybean meal and soybean oil. Processed soybeans can be used

domestically to produce food or meat or can be exported. Ethanol represents industrial uses of corn, which

is predominantly the production of ethanol for transportation fuel, and is used to produce the aggregate

consumption good. Meat represents animal agriculture and F represents the final food good purchased by

consumers.

The industry codes used to define processed soybeans, meat and food sectors in the model are: 1)

processed soybeans: 31122A - Soybean and other oilseed processing 2) Meat: 1121A0 - Beef cattle ranching

and farming, including feedlots and dual-purpose ranching and farming; 112120 - Dairy cattle and milk

production; 112A00 - Animal production, except cattle and poultry and eggs; 311119 - Other animal food

manufacturing 3) Food: all industries classified as 311 - Food manufacturing or 312 - Beverage and Tobacco

Product Manufacturing, excluding for animal food manufacturing, tobacco manufacturing and industries

already included as processed soybeans or meat.

End-use Shares Since the model is static, changes in crop stocks are not considered. On average, stock

changes are a relatively unimportant portion of US crop supply for corn, sorghum and soybeans, with the

change in stocks making up less than 10% of total consumption for at least nine of the ten years from

2003 to 2010. Stock changes can be much more significant for wheat and cotton, but are associated with

unexpectedly low or high production levels. The model reflects long-run average yields, so stock changes

become a less critical portion of total US crop supply. Crop imports to the US are also not included. Hay is

largely not traded, and the US is a major net importer of each of the remaining crops. Imports make up less

than a 1% share of total domestic consumption for corn, soybeans, sorghum and cotton.4 Wheat imports

are more significant, but make up only about 10% of total US consumption in the years 2006-2008, and a

smaller percentage in the years immediately preceding and proceeding years.

Corn is used for ethanol, food, feed (used in meat production) and exported. Feed and export shares

are from PSD data. Food and ethanol shares are based on PSD data and consumption end-use data in the

USDA Economic Research Service (ERS) Feed Grains Yearbook Tables (ERS, 2015a). In the PSD data,

36% of corn is used for food, seed and industrial uses. The Feed Grains Yearbook data shows that roughly

70% of corn used for food, feed or industrial use goes to ethanol for fuel. This is based on the average of

2006 to 2008. The remainder is assumed to be used for food.5 All ethanol is assumed to be used in the

production of the aggregate consumption good.

Wheat is used in food production or exported. The small portion of wheat production that is used

as feed is ignored because it accounts for less than 7% of total consumption between 2006 and 2008. All

3The detailed producer price NIPA IO tables after redefinition are used.
4Imports of processed soybeans (mean and oil) are also very small less than 1% of US consumption.
5A larger share of corn for ethanol is used because in more recent years ethanol production becomes more prominent in later

years.
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wheat consumption categorized as “Food, seed or industrial uses” in the PSD data is assumed to go to food

production because there are no major industrial uses of wheat.6

Soybeans are either exported or processed into meal and oil.7 Soybean meal and oil are then used as

food or feed and can be exported.8 The vast majority, 75%, of cotton is exported. The remainder is used

domestically to produce the composite good.

Based on the NIPA data, 74% of meat production is used in food production. The remainder of meat

production is own-used. Likewise, 81% of food production is consumed, while the remainder is own-used.

To construct these shares, exports (1.6% for meat 5.6% for food) and other end uses (2% for meat and 20%

for food) are ignored.

Labor Shares The share of labor in the total value of processed soybeans, meat and food production are

0.32, 0.42 and 0.46 respectively. These shares represent the total value of inputs from sectors in the NIPA

data that are not explicitly represented in the model. For the purposes of calculating labor input shares

from the NIPA data, industry codes 1111A0-Oilseed farming, 1111B0-Grain farming and 11900-Other crop

farming are assumed to represent the value of crops supplied to the intermediate production sectors and

325190-Other basic organic chemical manufacturing represents ethanol production. The share of labor used

in ethanol productions is 0.27, which is broadly consistent with cost estimates for the baseline period and

values used in the literature (Plevin and Mueller, 2008; Bento et al., 2015).

A.2.2 Agriculture

Crop and County Coverage

The seven crops encompass the majority of US crop production, accounting for roughly 90% of land allocated

to field crops, and 87% of the value of crop production in 2002, 2007 and 2012 according to USDA data (NASS,

2014). Only the most significant crop variety in terms of land shares and quantities is modeled. Therefore,

cotton represents upland cotton and wheat represents winter wheat. Upland cotton has made up more than

97% of total land planted to cotton in each year between 2000 and 2013 (NASS, 2014). Pima cotton made

up more than 10% of cotton acres in only New Mexico and California, both of which account for less than

3% of total land allocated to cotton. Winter wheat accounted for more than 69% of total wheat in each year

from 2000 to 2014. Over this same time period, durum wheat never accounted for more than 5% of total

wheat acres, while spring wheat accounted for approximately 25% of total wheat acres.

Counties must meet two criteria based on the quantity of land allocated to the seven modeled crops

to be included in the model. First, only counties located in states that contain more than 0.25% of total

land allocated to the modeled crops in both 2007 and 2012 are included. This criteria drops 13 states from

the analysis, but only a very small portion, less than 1.5%, of land allocated to the modeled crops.9 Second,

counties must contain more than 10,000 hectares of land allocated to the modeled crops in 2007 or 2012.

There are 864 counties within the included states that fail to meet this criteria, but these dropped counties

accounted for less than 3% of total land allocated to the modeled crops in the included states.

6See Table 5 of the USDA’s Wheat Data (ERS, 2015b).
7Unprocessed soybeans used domestically as animal feed are ignored because this end use accounts for less than 4% of total

consumption between 2006 and 2008.
8Soybean oil used for industrial purposes is not considered because it is less than a 3% of total processed soybean output.
9The states dropped are Arizona, Connecticut, Delaware, Florida, Maine, Massachusetts, Nevada, New Hampshire, New

Jersey, New Mexico, Rhode Island, Vermont and West Virginia. The model focuses on the continental US, so Alaska and
Hawaii are not included.
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Irrigated agriculture is modeled in counties if the share of irrigated cropland is at least 5% of total

land. Rainfed agriculture is not modeled in counties with more than 90% irrigated cropland. Just under

90% of irrigated cropland in the modeled counties and crops is accounted for with these assumptions.

Yields, Inputs and Costs

County-level yields for rainfed and irrigated crop production are from the Census of Agriculture. These

county-level values, along with county-level harvested crop shares are used to calculate state and regional

average yields for each crop and irrigation category for the counties included in the model. These aggregate

statistics are used along with Daycent output to calibrate the yield functions that enter the economic model.

N fertilizer application rates for rainfed and irrigated corn, soybeans, wheat, cotton and sorghum are

calculated from multiple survey years of state-level ARMS data. State-level application rates are calculated

from the ARMS data by multiplying the percent of acres treated with N fertilizer by the units of N applied

per unit land. Since the ARMS breaks down farms by irrigation system, application rates for irrigated crop

production are a weighted average rates for farms with gravity or pressure irrigation systems. The application

rates used in the model are averages across each available survey year between 2002 and 2012.10 Since grass

hay is not covered by ARMS, N application rates by region for grass hay are from the FASOM model data

set, which was used to conduct the EPA’s Regulatory Impact Assessment of the expanded Renewable Fuel

Standard program (Beach et al., 2010). Legume hay is assumed to receive no N fertilizer.

County-level data on yields and application rates are required for any county, irrigation category and

crop that is included in the model, but for which the N choice is not modeled. If county-level data is not

available, the first available average data from the state, region, or national level is used.

Productions costs for corn, soybeans, wheat, cotton, and sorghum are based on data from the Com-

modity Costs and Returns. Total production costs are calculated as the sum of all items designated operating

costs plus the costs from hired labor, capital recovery on machinery, taxes and insurance and general farm

overhead.11 The cost of purchased irrigation water is included only for irrigated crops. The Commodity

Costs and Returns data is available for nine Farm Resource Regions and at the national level. Cost data is

assigned to counties based on Farm Resource Region designation. If no cost data is available at the Farm

Resource Region for a particular county and crop, then the national average values are used.

Labor inputs to agriculture, lijk, are total costs less the costs of N fertilizer, which are calculated

using the Daycent yield functions and baseline prices for crops and N.

A.2.3 Prices

Baseline prices are reported in Table A.9. Crop prices are calculated from the national prices reported in

the NASS annual surveys. The price of N is calculated from the national price of anhydrous ammonia. In

the model, N represents nutrient N as opposed to N fertilizer material. The price of nutrient N is calculated

as the price of anhydrous ammonia divided by the nutrient N content of anhydrous ammonia, 0.8. All other

prices are normalized to one in the baseline.

10The 2002 survey year is included so that at least two survey years will be used to construct the average application rates.
The two most recent available soybean survey years are 2002 and 2006.

11Operating cost categories include: seed, fertilizer, soil conditioners, manure, chemicals, custom operations, fuel, lube and
electricity, repairs, purchased irrigation water, commercial drying, ginning, straw baling and interest on operating capital.
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A.3 Biophysical Model

Yield Function Calibration

Generating the marginal yield information used for calibration requires four key steps.12 First, the derivatives

of the yield response functions are evaluated at the baseline region average N application rates n0 and a 5%

reduction from the baseline rate, n1. Denote the marginal yields at these rates as dy0 and dy1 respectively.

Second, dy0 and dy1 are replaced with the region-crop averages for any crop-parcel with positive marginal

yields. Likewise, dy1 is replaced according to the region-crop average change in dy for all crop-parcel pairs

for which dy1 <= dy1. Third, dy0 are adjusted to fall within 10% of the state-crop median marginal yields.

This adjustment prevents extreme differences in predicted N application rates across parcels in each state.

For any dy0 values that were adjusted, dy1 is rescaled to preserve the percent difference between dy0 and

dy1. Fourth, marginal yields are scaled to achieve the desired yield elasticity with respect to N applications.

Using the cleaned marginal yield values, the parameters of the variable portion of the yield function

are calibrated according to:

β = 1 +
ln
(
dy1
dy0

)
ln
(
n1

n0

)
γ =

dy0

βnβ−1
0

. (A.13)

The first equation sets β to reflect the change in marginal yields due to reduced N applications, while the

second equation ensures that marginal yields match dy0 at the baseline N application rate. The final step in

calibration is to set ŷ such that predicted yields match observed yields at the N application rates predicted

under baseline prices.

12Although the subscripts are dropped in what follows, this procedure is conducted for all crop-parcel combinations.
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Table A.1: Baseline Input-Output Flows for Production and Consumption (billion $)

A. US

Endow, Supply HAY SB ETOH MEAT F C CF U

L 15,107.6 9.29 5.97 84.45 216.17 9,300.73 5,416.67
Corn 64.03 16.14 29.45 6.92
W. Wheat 9 4.41
Sorghum 2.98 1.39
Cotton 5.03 1.26
Grass Hay 6.69 6.69
Alfalfa 7.94 7.94
Soybean 32.9 19.74
O 4.81 4.81
HAY 14.63
SB 18.87 4.35
ETOH 22.1
MEAT 52.28 148.8
F 89.29 380.64
C 9,369.36
CF 9,750

B. ROW

Endow, Supply AG, ROW AG, US AG F C U Imports

L 28,992.6 912.6 1,031.13 27,048.87
A 643.5 257.4 386.1
Corn 11.53 11.53
W. Wheat 4.59 4.59
Sorghum 1.59 1.59
Cotton 3.77 3.77
Soybean 13.16 13.16
SB 5.81 5.81
AG, ROW 1,170
AG, US 40.45
AG 1,210.45
F 2,241.58
C 27,008.42 -40.45

Notes: In the US, the value of labor used for agriculture is $74.33 billion. Profit from agriculture, which enters the consumer’s
income, is $59.06 billion.
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Table A.2: Region Designations

Corn Belt
460 total counties, 460 with rainfed land and 42 with irrigated land
States: Illinois, Indiana, Iowa, Missouri, Ohio
Crops: Corn, W. Wheat, Cotton, Grass Hay, Alfalfa, Soybean

Plains
311 total counties, 309 with rainfed land and 150 with irrigated land
States: Kansas, Nebraska, North Dakota, South Dakota
Crops: Corn, W. Wheat, Sorghum, Grass Hay, Alfalfa, Soybean

Lake States
194 total counties, 194 with rainfed land and 34 with irrigated land
States: Michigan, Minnesota, Wisconsin
Crops: Corn, W. Wheat, Grass Hay, Alfalfa, Soybean

Northeast
103 total counties, 103 with rainfed land and 5 with irrigated land
States: Maryland, New York, Pennsylvania
Crops: Corn, W. Wheat, Grass Hay, Alfalfa, Soybean

Pacific Northwest
40 total counties, 37 with rainfed land and 32 with irrigated land
States: Oregon, Washington
Crops: Corn, W. Wheat, Grass Hay, Alfalfa

California
20 total counties, 16 with rainfed land and 20 with irrigated land
States: California
Crops: Corn, W. Wheat, Cotton, Grass Hay, Alfalfa

Mountains
150 total counties, 124 with rainfed land and 130 with irrigated land
States: Colorado, Idaho, Montana, Utah, Wyoming
Crops: Corn, W. Wheat, Sorghum, Grass Hay, Alfalfa, Soybean

South Central
291 total counties, 291 with rainfed land and 80 with irrigated land
States: Alabama, Arkansas, Kentucky, Louisiana, Mississippi, Tennessee, Texas
Crops: Corn, W. Wheat, Sorghum, Cotton, Grass Hay, Alfalfa, Soybean

Southeast
177 total counties, 177 with rainfed land and 60 with irrigated land
States: Georgia, North Carolina, South Carolina, Virginia
Crops: Corn, W. Wheat, Cotton, Grass Hay, Alfalfa, Soybean

Southwest
222 total counties, 222 with rainfed land and 86 with irrigated land
States: Oklahoma, Texas
Crops: Corn, W. Wheat, Sorghum, Cotton, Grass Hay, Alfalfa, Soybean

Texas is listed under both South Central and Southwest because a portion of
eastern Texas is designated as South Central.
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Table A.3: Baseline Crop Production by Region (Million Hectares)

Region Corn W. Wheat Sorghum Cotton Grass Hay Alfalfa Soybean

Corn Belt 16.05 0.96 0.15 1.70 0.69 12.99
Plains 8.37 4.91 1.06 2.23 1.90 6.29
Lake States 5.53 0.26 0.43 1.08 4.07
Northeast 0.79 0.15 0.73 0.32 0.46
Pacific Northwest 0.06 0.97 0.29 0.31
California 0.07 0.10 0.07 0.18 0.36
Mountains 0.51 2.03 0.06 0.92 1.70 0.00
South Central 1.83 0.76 0.18 0.92 2.41 0.09 3.22
Southeast 0.72 0.43 0.76 0.63 0.02 0.99
Southwest 0.81 2.63 0.94 1.65 2.42 0.13 0.11

Total 34.73 13.21 2.24 3.55 11.93 6.60 28.13
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Table A.4: Baseline N Application Rates (kg/ha)

Region Corn W. Wheat Sorghum Cotton Grass Hay Alfalfa Soybean

Corn Belt 162.79 59.06 103.23 162.00 0.00 2.64
Plains 149.92 69.03 82.26 173.45 0.00 7.12
Lake States 131.18 58.82 173.41 0.00 4.05
Northeast 88.49 59.04 122.03 0.00 4.36
Pacific Northwest 185.34 59.53 173.18 0.00
California 185.73 75.34 143.78 173.40 0.00
Mountains 141.11 57.92 34.44 165.23 0.00 4.57
South Central 185.47 59.47 63.13 112.11 180.86 0.00 6.54
Southeast 151.99 59.45 93.97 155.21 0.00 8.40
Southwest 150.27 60.76 66.05 63.56 147.76 0.00 4.40

National 153.42 63.12 72.67 85.87 163.36 0.00 4.53

Notes: Average predicted mineral N application rates at baseline prices.
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Table A.5: Baseline N Applications (million tonnes)

Region Corn W. Wheat Sorghum Cotton Grass Hay Alfalfa Soybean

Corn Belt 2.61 0.06 0.02 0.28 0.03
Plains 1.25 0.34 0.09 0.39 0.04
Lake States 0.73 0.02 0.07 0.02
Northeast 0.07 0.01 0.09 0.00
Pacific Northwest 0.01 0.06 0.05
California 0.01 0.01 0.01 0.03
Mountains 0.07 0.12 0.00 0.15 0.00
South Central 0.34 0.05 0.01 0.10 0.44 0.02
Southeast 0.11 0.03 0.07 0.10 0.01
Southwest 0.12 0.16 0.06 0.10 0.36 0.00

Total 5.33 0.83 0.16 0.30 1.95 0.00 0.13
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Table A.6: Baseline N2O Emission Rates (tCO2e/ha)

Region Corn W. Wheat Sorghum Cotton Grass Hay Alfalfa Soybean

Corn Belt 2.72 1.14 1.78 2.46 1.10 1.60
Plains 1.33 0.55 0.71 1.51 1.07 0.94
Lake States 2.15 1.07 2.29 1.02 1.57
Northeast 1.62 1.02 1.83 1.19 1.47
Pacific Northwest 1.69 0.40 1.46 1.29
California 1.79 1.24 1.71 1.72 1.32
Mountains 1.43 0.71 0.62 1.78 0.96 1.08
South Central 2.12 0.92 1.05 1.50 2.22 0.84 1.06
Southeast 1.59 0.86 1.23 1.69 0.96 1.06
Southwest 1.61 0.74 0.77 1.03 1.81 2.10 1.35

National 2.16 0.70 0.76 1.24 1.93 1.08 1.36

Notes: Average emissions rates calculated using predicted N application rate at baseline prices.
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Table A.7: Baseline N2O (TgCO2e)

Region Corn W. Wheat Sorghum Cotton Grass Hay Alfalfa Soybean

Corn Belt 43.61 1.10 0.26 4.19 0.76 20.76
Plains 11.12 2.72 0.75 3.36 2.03 5.94
Lake States 11.90 0.28 0.97 1.10 6.40
Northeast 1.28 0.15 1.33 0.39 0.67
Pacific Northwest 0.11 0.38 0.42 0.40
California 0.13 0.13 0.11 0.31 0.47
Mountains 0.73 1.44 0.04 1.63 1.64 0.00
South Central 3.87 0.70 0.19 1.38 5.36 0.07 3.43
Southeast 1.14 0.37 0.94 1.06 0.02 1.06
Southwest 1.30 1.95 0.72 1.69 4.37 0.27 0.15

Total 75.20 9.22 1.70 4.39 23.02 7.15 38.40
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Table A.8: Marginal Abatement Costs of Changing Inputs

Region Corn W. Wheat Sorghum Cotton Grass Hay Alfalfa Soybean

Corn Belt 2.90 43.47 5.08 4.81 N/A N/A
Plains 12.35 296.90 23.72 13.37 N/A N/A
Lake States 3.93 86.17 8.07 N/A N/A
Northeast 25.07 45.28 10.70 N/A N/A
Pacific Northwest 3.03 294.26 15.72 N/A
California 7.32 162.02 3.70 24.36 N/A
Mountains 19.86 274.18 150.04 3.89 N/A N/A
South Central 3.50 86.40 2.60 7.73 2.64 N/A N/A
Southeast 2.62 73.87 17.14 6.29 N/A N/A
Southwest 5.53 143.37 93.30 91.64 71.55 N/A N/A

National 6.19 216.65 54.57 48.56 20.55 N/A N/A

Notes: Partial equilibrium marginal abatement costs ($) for changing N application rates at
0.05 tCO2e/ha reduction. A maximum cost of 300 $/tCO2e is imposed for each crop and
county. No abatement through N application rate changes is available for legume crops.
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Table A.9: Baseline Prices

Product Value Unit

Corn 197.50 $/t
W. Wheat 227.44 $/t
Sorghum 182.65 $/t
Cotton 1576.30 $/t
Grass Hay 127.92 $/t
Alfalfa 173.43 $/t
Soybean 415.57 $/t
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Table A.10: Policy Costs Under Alternative Parameter Assumptions (10% Reduction)

tE tN tNi tNi + tAk n̄H n̄L

million $ Ratio to tE

Primary Costs
Central 517.81 1.45 1.15 1.10 1.45 1.51

Low ηA 537.80 1.43 1.13 1.10 1.39 1.44
High ηA 503.28 1.47 1.17 1.10 1.50 1.57

Low ηY 370.72 1.40 1.12 1.09 1.43 1.46
High ηY 678.82 1.50 1.17 1.11 1.46 1.56

Low ηF 528.32 1.46 1.15 1.10 1.46 1.52
High ηF 508.32 1.44 1.15 1.10 1.44 1.50

Low ηL 517.95 1.45 1.15 1.10 1.45 1.51
High ηL 517.67 1.45 1.15 1.10 1.45 1.51

Gross Costs
Central -878.12 2.95 2.75 1.07 3.38 3.56

Low ηA -909.29 2.95 2.75 1.07 3.35 3.53
High ηA -857.37 2.95 2.75 1.08 3.41 3.59

Low ηY -578.47 3.08 2.88 1.09 3.55 3.74
High ηY -1224.42 2.86 2.66 1.06 3.27 3.46

Low ηF -884.66 2.98 2.78 1.08 3.42 3.61
High ηF -872.17 2.92 2.72 1.07 3.35 3.52

Low ηL -575.08 3.42 3.12 1.11 3.94 4.17
High ηL -1194.58 2.71 2.56 1.06 3.11 3.26

Gross Costs with Compensation
Central -904.80 1.05 1.06 0.94 1.23 0.93

Low ηA -926.87 1.00 1.01 0.94 1.16 0.86
High ηA -881.73 1.10 1.11 0.94 1.28 1.00

Low ηY -765.21 1.03 1.05 0.94 1.20 0.92
High ηY -1016.82 1.08 1.07 0.94 1.26 0.96

Low ηF -962.97 1.05 1.06 0.94 1.21 0.93
High ηF -852.72 1.06 1.06 0.94 1.24 0.94

Low ηL -595.24 1.15 1.10 0.95 1.35 1.02
High ηL -1228.50 1.01 1.04 0.94 1.16 0.89
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Table A.11: Policy Impacts Under Alternative Parameter Assumptions (10% Reduction)

tE tN tNi tNi + tAk n̄H n̄L

∆PF
% Ratio to tE

Central 1.76 1.13 1.02 1.07 1.08 1.22

Low ηA 1.83 1.15 1.05 1.07 1.11 1.24
High ηA 1.70 1.11 1.00 1.07 1.06 1.20

Low ηY 1.40 1.11 1.01 1.06 1.07 1.20
High ηY 2.10 1.15 1.04 1.08 1.10 1.24

Low ηF 1.84 1.13 1.02 1.07 1.09 1.22
High ηF 1.68 1.13 1.02 1.07 1.08 1.22

Low ηL 1.76 1.13 1.02 1.07 1.08 1.22
High ηL 1.76 1.13 1.02 1.07 1.08 1.22

∆ Env. Taxes
$/ha Ratio to tE

Central 107.12 0.26 0.24 1.00 0.00 0.00

Low ηA 111.63 0.26 0.24 1.01 0.00 0.00
High ηA 103.88 0.26 0.24 1.00 0.00 0.00

Low ηY 76.33 0.25 0.24 1.00 0.00 0.00
High ηY 140.94 0.27 0.25 1.01 0.00 0.00

Low ηF 109.46 0.26 0.24 1.00 0.00 0.00
High ηF 105.03 0.26 0.24 1.00 0.00 0.00

Low ηL 107.15 0.26 0.24 1.00 0.00 0.00
High ηL 107.10 0.26 0.24 1.00 0.00 0.00

∆ Ag. Profit
$/ha Ratio to tE

Central 1.11 86.05 76.85 7.12 97.74 119.37

Low ηA 0.57 177.83 159.21 13.26 200.15 243.92
High ηA 0.99 90.95 80.96 7.66 104.27 127.53

Low ηY 10.22 7.55 6.81 1.54 8.33 10.12
High ηY -12.20 -9.18 -8.10 0.37 -10.71 -13.17

Low ηF 4.00 25.20 22.47 2.81 28.47 34.73
High ηF -1.48 -61.00 -54.56 -3.32 -69.64 -85.20

Low ηL 1.14 83.64 74.69 6.96 94.98 116.00
High ηL 1.07 88.62 79.14 7.29 100.66 122.94
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Figure A.1: Included Counties
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